뇌 MRI 영상의 자동 분류는 뇌종양의 조기 진단을 하는 데 있어 중요한 역할을 한다. 본 연구에서 우리는 심층 특징 앙상블을 사용한 MRI 영상에서의 딥 러닝 기반 뇌종양 분류 모델을 제안한다. 우선 사전 학습된 3개의 합성 곱 신경망을 사용하여 입력 MRI 영상에 대한 심층 특징들을 추출한다. 그 이후 추출된 심층 특징들은 완전 연결 계층들로 구성된 분류 모듈의 입력 값으로 들어간다. 분류 모듈에서는 우선 3개의 서로 다른 심층 특징들 각각에 대해 먼저 완전 연결 계층을 거쳐 특징 차원을 줄인다. 그 이후 3개의 차원이 준 특징들을 결합하여 하나의 특징 벡터를 생성한 뒤 다시 완전 연결 계층의 입력값으로 들어가서 최종적인 분류 결과를 예측한다. 우리가 제안한 모델을 평가하기 위해 웹상에 공개된 뇌 MRI 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 모델이 다른 기계학습 기반 모델보다 더 좋은 성능을 나타냄을 확인하였다.
동맥경화증은 경동맥 혈관 벽이 두꺼워지는 질병으로 진단을 위해 혈관 벽의 두께를 모니터링하는 것이 중요하다. 본 연구에서는 경동맥 MRI 영상에서 324개의 라디오믹스 특징을 추출하고 머신러닝 기법을 이용하여 동맥경화증을 진단하는 모델을 제안한다. 라디오믹스 특징을 통해 로지스틱 회귀, 서포트 벡터 머신, 랜덤 포레스트, XGBoost의 총 4가지 분류 모델을 학습하였다. 5-fold 교차 검증에서 가장 높은 성능의 모델인 XGBoost는 정확도 0.9023, 민감도 0.9517, 특이도 0.8035, AUC 0.8776의 결과값을 보여준다.
신경교종(glioma)은 신경교세포에서 발생하는 뇌 종양으로 low grade glioma와 예후가 나쁜 high grade glioma로 분류된다. 자기공명영상(magnetic Resonance Imaging, MRI)은 비침습적 수단으로 이를 이용한 신경교종 진단에 대한 연구가 활발히 진행되고 있다. 또한, 단일 modality의 정보 한계를 극복하기 위해 다중 modality를 조합하여 상호 보완적인 정보를 얻는 연구도 진행되고 있다. 본 논문은 네가지 modality(T1, T1Gd, T2, T2-FLAIR)의 MRI 영상에 입력단 fusion을 적용한 3D CNN 기반의 모델을 제안한다. 학습된 모델은 검증 데이터에 대해 정확도 0.8926, 민감도 0.9688, 특이도 0.6400, AUC 0.9467의 분류 성능을 보였다. 이를 통해 여러 modality 간의 상호관계를 학습하여 신경교종의 등급을 효과적으로 분류함을 확인하였다.
In this paper, we propose a method to fabricate a patient-specific breast implant using MRI images and 3D scan data. Existing breast implants for breast reconstruction surgery are primarily fabricated products for shaping, and among the limited types of implants, products similar to the patient's breast have been used. In fact, the larger the difference between the shape of the breast and the implant, the more frequent the postoperative side effects and the lower the satisfaction. Previous researches on the fabrication of patient-specific breast implants have used limited information based on only MRI images or on only 3D scan data. In this paper, we propose an algorithm for the fabrication of patient-specific breast implants that combines MRI images with 3D scan data, considering anatomical suitability for external shape, volume, and pectoral muscle. Experimental results show that we can produce precise breast implants using the proposed algorithm.
This study analyzed a family therapy case which dealt with family violence and was consisted of 14 sessions. The therapeutic perspective for this case was MRI model, a strategic family therapy model which emphasizes attempted solutions and interactions. The results of this study were as follows. This study found the interaction process of occurring family violence. When the husband attempted conversations with his wife after drinking, the wife who was anxious and dreadful avoided conversation. This avoidance made the husband felt rejected feeling, and he battered his wife. The avoidance of conversation, an attempted solution of wife, was made from her frame of reference which was affected from her original family context and the couple's communication style in ordinary times. The therapist made the couple recognize their attempted solutions were not effective, and he helped them begin new solutions or coping behaviors. This intervention process was long and hard, but the couple changed their attempted solutions to new solutions which were clear communication styles and functional interaction process. This study results showed the effectiveness of couple therapy on family violence. The effectiveness of MRI model was also proved from the study. The results of study will be helpful to the family therapists and counsellors in the field of family violence.
본 연구에서는 바이어스 필드에 의해 왜곡된 MRI 영상에 대한 분할을 위해 확장된 EM 알고리즘을 기반으로 한 통계적 접근법을 제시한다. 영상의 명암값을 자료로 하는 분할기법들은 고주파 성분의 잡음 뿐만 아니라 영상을 불균질하게 만드는 바이어스 필드라는 저주파 성분의 왜곡에 특히 취약하다. 이 문제를 해결하기 위해 본 논문에서는 잡음을 효과적으로 제어하기 위해 마코프랜덤필드가 적용된 정규혼합모형을 고려하며, 효과적인 바이어스 필드의 보정을 위해 페널티-우도를 도입하여 추정하는 방법으로 고안되었다.
기능적 자기 공명영상(functional magnetic resonance imaging;fMRI)의 발전은 뇌 기능의 매핑, 휴식 상태에서 뇌 네트워크의 이해에 상당한 기여를 하였다. 본 논문은 알츠하이머의 진행상태를 분류하기 위해 CNN-LSTM 기반의 분류 모델을 제안한다. 첫 번째로 특징 추출 이전 fMRI 데이터에서 잡음을 제거하기 위해 4단계의 전처리를 수행한다. 두 번째, 전처리가 끝나면 U-Net 구조를 활용하여 공간적 특징을 추출한다. 세 번째, 추출된 공간적 특징은 LSTM을 활용하여 시간적 특징을 추출하여 최종적으로 분류하는 과정을 거친다. 실험은 데이터의 시간차원을 조절하여 진행하였다. 5-fold 교차 검증을 사용하여 평균 96.4%의 정확도를 달성하였고 이러한 결과는 제안된 방법이 fMRI 데이터를 분석하여 알츠하이머의 진행을 식별하는데 높은 잠재력을 가지고 있음을 보여준다.
이 논문에서는 결합된 PET(fluorodeoxyglucose, 18F-FDG)와 MRI(magnetic nanoparticles, MNP) 조영제를 동시 PET-MRI 스캔에 사용하기 위한 가교제로 N-(p-maleimidophenyl) isocyanate를 사용하여 합성하는 방안을 제안하였다. 실험은 신경교종 줄기 세포 마우스 모델에서 결합 조영제(18F-FDG로 표지된 MNP)를 주입하기 전후에 PET-MRI 이미지를 획득하고 평가하였다. 획득한 각 영상에 대해 관심영역(ROI)을 설정한 후, 분할하여 병변의 면적을 계산하였을 때 PET 영상이 MRI 영상보다 더 크고 정확했다. 특히 동시 PET-MRI 영상은 주변 연조직과 함께 정확한 병변을 묘사하였다. 평균 및 표준편차 값은 조영제 주입 여부에 관계없이 PET 영상 또는 PET-MRI 동시 영상보다 MRI 단독 영상에서 더 높게 나타났다. 또한 동시 PET-MRI 영상값이 PET 영상보다 평균 및 표준편차 값이 높게 나타났다. 18F-FDG 라벨링된 MNP 조영제와 동시 PET-MRI 영상을 표적 영상으로 사용하고 18F- FDG 조영제만을 원본 이미지로 사용했을 때의 피크 신호 대 잡음비(PSNR) 값은 모든 실험에서 유의미 하게 나타났다. 결론적으로 동시 PET-MRI 영상에서 결합된 18F-FDG 표지 MNP 조영제가 유용함을 확인하였다. 다양한 핵종을 사용할 수 있는 SPECT-MRI 영상 연구를 통해 진단과 치료를 동시에 할 수 있는 제제를 개발하기 위해서는 향후 연구가 필요할 것이다.
본 논문에서는 지오데식 동적 윤곽선 모델을 이용하여 뇌실 영역을 검출하기 위하여 기존의 에지지시함수를 대신한 영역 기반의 곡선진행억제 함수를 제안하였다. 제안한 곡선 진행 억제 함수는 뇌실 영역의 검출에 매우 효과적이었으며, 이 함수는 MRI 영상에서 밝게 나타나는 뇌실 영역의 평균 밝기를 기반으로 한다. 본 논문에서는 제안한 방법이 기존의 방법보다 뇌실 영역을 잘 검출할 수 있음을 다양한 척도를 이용하여 수치적으로 비교하였다. 실제 정상과 뇌종양에 의한 뇌질환 영상에 적용시켜 뇌실 검출 과정을 시각적으로 비교하여 우수성을 검증하였다.
In the presence of an electrically conducting medical lead, radio frequency (RF) coils in magnetic resonance imaging (MRI) systems may concentrate the RF energy and cause tissue heating near the lead. A novel design for a medical lead to reduce this heating by introducing pins in the lead is presented. Peak 10 g specific absorption rate (SAR) in heart tissue, an indicator of heating, was calculated and compared for both conventional (Medtronic) lead design and our proposed design. Remcom XFdtd software was used to calculate the peak SAR distribution in a realistic model of the human body. The model contained a medical lead that was exposed to RF magnetic fields at 64 MHz (1.5 T), 128 MHz (3 T) and 300 MHz (7 T) using a model of an MR birdcage body coil. The proposed design of adding pins to the medical lead can significantly reduce the heating from different MRI systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.