• Title/Summary/Keyword: MRI Image

Search Result 941, Processing Time 0.031 seconds

Pattern Clustering of Symmetric Regional Cerebral Edema on Brain MRI in Patients with Hepatic Encephalopathy (간성뇌증 환자의 뇌 자기공명영상에서 대칭적인 지역 뇌부종 양상의 군집화)

  • Chun Geun Lim;Hui Joong Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.2
    • /
    • pp.381-393
    • /
    • 2024
  • Purpose Metabolic abnormalities in hepatic encephalopathy (HE) cause brain edema or demyelinating disease, resulting in symmetric regional cerebral edema (SRCE) on MRI. This study aimed to investigate the usefulness of the clustering analysis of SRCE in predicting the development of brain failure. Materials and Methods MR findings and clinical data of 98 consecutive patients with HE were retrospectively analyzed. The correlation between the 12 regions of SRCE was calculated using the phi (φ) coefficient, and the pattern was classified using hierarchical clustering using the φ2 distance measure and Ward's method. The classified patterns of SRCE were correlated with clinical parameters such as the model for end-stage liver disease (MELD) score and HE grade. Results Significant associations were found between 22 pairs of regions of interest, including the red nucleus and corpus callosum (φ = 0.81, p < 0.001), crus cerebri and red nucleus (φ = 0.72, p < 0.001), and red nucleus and dentate nucleus (φ = 0.66, p < 0.001). After hierarchical clustering, 24 cases were classified into Group I, 35 into Group II, and 39 into Group III. Group III had a higher MELD score (p = 0.04) and HE grade (p = 0.002) than Group I. Conclusion Our study demonstrates that the SRCE patterns can be useful in predicting hepatic preservation and the occurrence of cerebral failure in HE.

A study on image distortion improvement using silicon device in thyroid diffusion MRI images (갑상선의 확산강조영상 검사 시 실리콘 이용한 뒤틀림 감소에 관한 연구)

  • Choi, Kwan-Woo;Seo, Dae-Keon;Lee, Ho-Beom;Goh, Hee-Jin;Na, Sa-Ra;Han, Dong-Kyoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4380-4386
    • /
    • 2014
  • This study was conducted to minimize the imaging distortion by reducing the differences in susceptibility between the tissue and air surrounding it while performing a thyroid diffusion imaging procedure. The study group was composed of 23 healthy adults. Thyroids with many distortions near the air, larynx, and trachea were chosen to test and evaluate the diffusion imaging difference between before and after an application of silicon. As a result, there was reduced distortion with silicon application, and the differences decreased from 30% to 10%. According to One-way ANOVA and Duncan's post-hoc test, there were no significant differences between imaging with a silicon application and T2 imaging of the surface area, which was the standard image. In conclusion, this study presented a radical improvement in reducing the distortions in imaging by compensating for an uneven tissue surface near air without affecting the magnetic resonance contrast and complicating the imaging processes.

Diffusion-weighted MR imaging findings of intracerebral hematoma (뇌실질내의 확산강조영상 소견)

  • 박창숙;최순섭;오종영;박병호;김기욱;남경진;이영일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Purpose : To evaluate diffusion-weighted imaging findings of intracerebral hematoma according to the time sequence. Materials and methods : Seventeen patients with intracerebral hematoma were studied. Diffusion weighted images using 1.5 tesla MRI machine were obtained with b-value of $1000{\;}sec/\textrm{mm}^2$. The patients were grouped as hyperacute stage(within 12 hours, 5 patients), acute stage(within 3 days, 4 patients), subacute stage(within 3 weeks, 4 patients), and chronic stage(after 3 weeks,4 patients). The signal intensities were analysed as bright, high, iso, low and dark at the central and peripheral portions of the hematoma in each stage, and compared with those of T2 and T1 weighted images. Results : The signal intensities of the central and peripheral portion of the intracerebral hematoma on diffusion-weighted images were high and dark in hyperacute stage, dark and high-bright in acute stage, and high-bright and dark in subacute and chronic stages. The patterns of signal change of hematoma on diffusion-weighted image according to the time sequence were similar to those on T2-weighted image, but changed early and prominently. Conclusion : The intracerebral hematoma on diffusion-weighted image showed unique central and peripheral signal intensity according to the time sequence. Central portions show high to bright signals in hyperacute, subacute and chronic stage, and dark signal in acute stage, and peripheral portions show dark signals in hyperacute, subacute and chronic stage, and high to bright signal in acute stage.

  • PDF

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

Evaluation of Accuracy on Hitchcoke CT/angio localization system using QA head phantom (QA용 두부 팬톰을 이용한 Hitchcoke CT 및 혈관조영 정위적 시스템에 대한 정확도 평가)

  • 김성현;서태석;윤세철;손병철;김문찬;신경섭
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • In order to provide complementary image data, CT(computed tomography), MR(magnetic resonance) and angiography have been used in the field of Stereotactic Radiosurgery(SRS) and neurosurgery. The aim of this work is to develop 3-D stereotactic localization system in order to determine the precise shape, size and location of the lesion in the brain in the field of Stereotactic Radiosurgery(SRS) and neurosurgery using multi-image modality and multi purpose QA phantom. In order to obtain accurate position of a target, Hitchcoke stereotactic frame and CT/angiography localizers were rigidly attached to the phantom with nine targets dispersed in 3-D space. The algorithms to obtain a 3-D stereotactic coordinates of the target have been developed using the images of the geometrical phantom which were taken by CT/angiography. Positions of targets computed by our algorithms were compared to the absolute position assigned in the phantom. Outlines of targets on each CT image were superimposed each other on angiography images. A spatial mean distance errors were 1.02${\pm}$0.17mm for CT with a 512${\times}$512 matrix and 2mm slice thickness, 0.41${\pm}$0.05mm for angiogra- phy localization. The resulting accuracy in the target localization suggests that the developed system has enough Qualification for Stereotactic Radiosurgery (SRS).

  • PDF

Dynamic Computed Tomography based on Spatio-temporal Analysis in Acute Stroke: Preliminary Study (급성 뇌졸중 환자의 시공간 분석 기법을 이용한 동적 전산화 단층 검사: 예비 연구)

  • Park, Ha-Young;Pyeon, Do-Yeong;Kim, Da-Hye;Jung, Young-jin
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.543-547
    • /
    • 2016
  • Acute stroke is a one of common disease that require fast diagnosis and treatment to save patients life. however, the acute stroke may cause lifelong disability due to brain damage with no prompt surgical procedure. In order to diagnose the Stroke, brain perfusion CT examination and possible rapid implementation of 3D angiography has been widely used. However, a low-dose technique should be applied for the examination since a lot of radiation exposure to the patient may cause secondary damage for the patients. Therefore, the degradation of the measured CT images may interferes with a clinical check in that blood vessel shapes on the CT image are significantly affected by gaussian noise. In this study, we employed the spatio-temporal technique to analyze dynamic (brain perfusion) CT data to improve an image quality for successful clinical diagnosis. As a results, proposed technique could remove gaussian noise successfully, demonstrated a possibility of new image segmentation technique for CT angiography. Qualitative evaluation was conducted by skilled radiological technologists, indicated significant quality improvement of dynamic CT images. the proposed technique will be useful tools as a clinical application for brain perfusion CT examination.

Magnetic Resonance Image Analysis using MESH for High-frequency Shielding (고주파 차폐용 Mesh를 이용한 자기공명영상 분석)

  • Shin, Woon-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.975-982
    • /
    • 2021
  • The purpose of this study is to evaluate the effect on the phantom for magnetic resonance imaging located nearby by partially shielding RF with a mesh made thinner than hair composed of copper, black metal, and polyester using metallic materials of titanium, which are commonly used for esophageal stents and implants in the body. Magnetic resonance images according to field of view (FOV) were analyzed in the Spin Echo T1 weighted images of TR 500 ms, TE 20 ms, NEX 1, and slice thickness 5mm using a Cardiac coil of 3T Achieva X-series. Aliasing artifact did not occur in FOV 304 mm × 304 mm, but it occurred in 250 mm × 250 mm and 170 mm × 170 mm. In FOV 170 mm × 170 mm, when a mesh was not used, the SNR was measured with 78.23, and when separated by standing a mesh in the middle, it was 215.05, and when completely shielded with a mesh, the SNR was 366.44. In addition, when completely shielded with a mesh, the aliasing artifact was also removed, and signal intensities on the left, middle and right of the image were also able to obtain homogeneous images compared to the previous two cases. In conclusion, if RF is partially shielded with a mesh, aliasing artifact can be removed, and magnetic resonance images with excellent image resolution and homogeneity can be obtained using a small FOV.

Feasibility of Spin-Echo Echo-Planar Imaging MR Elastography in Livers of Children and Young Adults

  • Kim, Jin Kyem;Yoon, Haesung;Lee, Mi-Jung;Kim, Myung-Joon;Han, Kyunghwa;Koh, Hong;Kim, Seung;Han, Seok Joo;Shin, Hyun Joo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.251-258
    • /
    • 2019
  • Purpose: To assess the feasibility of the use of spin-echo echo-planar imaging (SE-EPI) magnetic resonance elastography (MRE) in livers of children and young adults. Materials and Methods: Patients (${\leq}20$ years old) who underwent 3T SE-EPI MRE were included retrospectively. Subjects were divided into three groups according to the purpose of the liver MRI: suspicion of fatty liver or focal fat deposition in the liver (FAT group), liver fibrosis after receiving a Kasai operation from biliary atresia (BA group), and hepatic iron deposition after receiving chemotherapy or transfusions (IRON group). Technical failure of MRE was defined when a stiffness map showed no pixel value with a confidence index higher than 95%, and the patients were divided as success and failure groups accordingly. Clinical findings including age, gender, weight, height, and body mass index and magnetic resonance imaging results including proton density fat fraction (PDFF), $T2^*$, and MRE values were assessed. Factors affecting failure of MRE were evaluated and the image quality in wave propagation image and stiffness map was evaluated using the appropriate scores. Results: Among total 240 patients (median 15 years, 211 patients in the FAT, 21 patients in the BA, and 8 patients in the IRON groups), technical failure was noted in six patients in the IRON group (6/8 patients, 75%), while there were no failures noted in the FAT and BA groups. These six patients had $T2^*$ values ranging from 0.9 to 3.8 ms. The image quality scores were not significantly different between the FAT and BA groups (P > 0.999), while the scores were significantly lower in the IRON group (P < 0.001). Conclusion: The 3T SE-EPI MRE in children and young adults had a high technical success rate. The technical failure was occurred in children with decreased $T2^*$ value (${\leq}3.8ms$) from iron deposition.

Comparison of CT based-CTV plan and CT based-ICRU38 plan in brachytherapy planning of uterine cervix cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거할 치료계획의 비교)

  • Shim JinSup;Jo JungKun;Si ChangKeun;Lee KiHo;Lee DuHyun;Choi KyeSuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • Purpose : Although Improve of CT, MRI Radio-diagnosis and Radiation Therapy Planing, but we still use ICRU38 Planning system(2D film-based) broadly. 3-Dimensional ICR plan(CT image based) is not only offer tumor and normal tissue dose but also support DVH information. On this study, we plan irradiation-goal dose on CTV(CTV plan) and irradiation-goal dose on ICRU 38 point(ICRU38 plan) by use CT image. And compare with tumor-dose, rectal-dose, bladder-dose on both planning, and analysis DVH Method and Material : Sample 11 patients who treated by Ir-192 HDR. After 40Gy external radiation therapy, ICR plan established. All the patients carry out CT-image scanned by CT-simulator. And we use PLATO(Nucletron) v.14.2 planing system. We draw CTV, rectum, bladder on the CT image. And establish plan irradiation-$100\%$ dose on CTV(CTV plan) and irradiation-$100\%$ dose on A-point(ICRU38 plan) Result : CTV volume($average{\pm}SD$) is $21.8{\pm}26.6cm^3$, rectum volume($average{\pm}SD$) is $60.9{\pm}25.0cm^3$, bladder volume($average{\pm}SD$) is $116.1{\pm}40.1cm^3$ sampled 11 patients. The volume including $100\%$ dose is $126.7{\pm}18.9cm^3$ on ICRU plan and $98.2{\pm}74.5cm^3$ on CTV plan. On ICRU planning, the other one's $22.0cm^3$ CTV volume who residual tumor size excess 4cm is not including $100\%$ isodose. 8 patient's $12.9{\pm}5.9cm^3$ tumor volume who residual tumor size belows 4cm irradiated $100\%$ dose. Bladder dose(recommended by ICRU 38) is $90.1{\pm}21.3\%$ on ICRU plan, $68.7{\pm}26.6\%$ on CTV plan, and rectal dose is $86.4{\pm}18.3\%,\;76.9{\pm}15.6\%$. Bladder and Rectum maximum dose is $137.2{\pm}50.1\%,\;101.1{\pm}41.8\%$ on ICRU plan, $107.6{\pm}47.9\%,\;86.9{\pm}30.8\%$ on CTV plan. Therefore CTV plan more less normal issue-irradiated dose than ICRU plan. But one patient case who residual tumor size excess 4cm, Normal tissue dose more higher than critical dose remarkably on CTV plan. $80\%$over-Irradiated rectal dose(V80rec) is $1.8{\pm}2.4cm^3$ on ICRU plan, $0.7{\pm}1.0cm^3$ on CTV plan. $80\%$over-Irradiated bladder dose(V80bla) is $12.2{\pm}8.9cm^3$ on ICRU plan, $3.5{\pm}4.1cm^3$ on CTV plan. Likewise, CTV plan more less irradiated normal tissue than ICRU38 plan. Conclusion : Although, prove effect and stability about previous ICRU plan, if we use CTV plan by CT image, we will reduce normal tissue dose and irradiated goal-dose at residual tumor on small residual tumor case. But bigger residual tumor case, we need more research about effective 3D-planning.

  • PDF

Semi-automated Tractography Analysis using a Allen Mouse Brain Atlas : Comparing DTI Acquisition between NEX and SNR (알렌 마우스 브레인 아틀라스를 이용한 반자동 신경섬유지도 분석 : 여기수와 신호대잡음비간의 DTI 획득 비교)

  • Im, Sang-Jin;Baek, Hyeon-Man
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • Advancements in segmentation methodology has made automatic segmentation of brain structures using structural images accurate and consistent. One method of automatic segmentation, which involves registering atlas information from template space to subject space, requires a high quality atlas with accurate boundaries for consistent segmentation. The Allen Mouse Brain Atlas, which has been widely accepted as a high quality reference of the mouse brain, has been used in various segmentations and can provide accurate coordinates and boundaries of mouse brain structures for tractography. Through probabilistic tractography, diffusion tensor images can be used to map comprehensive neuronal network of white matter pathways of the brain. Comparisons between neural networks of mouse and human brains showed that various clinical tests on mouse models were able to simulate disease pathology of human brains, increasing the importance of clinical mouse brain studies. However, differences between brain size of human and mouse brain has made it difficult to achieve the necessary image quality for analysis and the conditions for sufficient image quality such as a long scan time makes using live samples unrealistic. In order to secure a mouse brain image with a sufficient scan time, an Ex-vivo experiment of a mouse brain was conducted for this study. Using FSL, a tool for analyzing tensor images, we proposed a semi-automated segmentation and tractography analysis pipeline of the mouse brain and applied it to various mouse models. Also, in order to determine the useful signal-to-noise ratio of the diffusion tensor image acquired for the tractography analysis, images with various excitation numbers were compared.