• Title/Summary/Keyword: MRI Image

Search Result 941, Processing Time 0.026 seconds

Magnetic Resonance Image Manifestations of the Atypical Meningioma

  • Wu, Qing-Wu;Yan, Rui-Fang;Li, Qiang;Hu, Ying;Zhou, Feng-Mei;Ren, Ji-Peng;Yang, Rui-Min;Zhang, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6337-6340
    • /
    • 2013
  • Through retrospective analysis of 13 cases of magnetic resonance image (MRI) manifestations of atypical meningiomas confirmed by operation and pathology in the First Affiliated Hospital of Xinxiang Medical University, the objective of this study was to evaluate the diagnostic value of MRI in order to improve the accuracy rate of preoperative diagnosis. In this retrospective analysis of MRI findings for atypical meningiomas in First Affiliated Hospital of Xinxiang Medical University from January to July in 2012, the location, morphology and tumor signals and other tumor imaging characteristics were covered. In 13 cases of atypical meningioma patients of this group, most tumors were located at typical sites (10/13), mainly the falx cerebri, parasagittal, convexity, saddle area. Only two cases were at atypical locations, 1 in the cerebellar hemisphere and 1 in a lateral ventricle. Most of the tumors showed T1 and T2 isointensity signals, and necrosis, calcification, and peritumoral edema were always featured. DWI showed isointensity in 11 cases (11/13), and hyperintensity in 2. Some 9 cases had dural tail signs, 12 had accurate positioning (12/13), and 2 were postoperative recurrences. MRI has high value in the diagnosis of atypical meningiomas, with important roles in early clinical diagnosis, treatment and prognosis evaluation.

Evaluation of Knee Joint after Double-Bundle ACL Reconstruction with Three-Dimensional Isotropic MRI

  • Jung, Min ju;Jeong, Yu Mi;Lee, Beom Goo;Sim, Jae Ang;Choi, Hye-Young;Kim, Jeong Ho;Lee, Sheen-Woo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.95-104
    • /
    • 2016
  • Purpose: To evaluate the knee joint after double-bundle anterior cruciate ligament (ACL) reconstruction with three-dimensional (3D) isotropic magnetic resonance (MR) image, and to directly compare the ACL graft findings on 3D MR with the clinical results. Materials and Methods: From January 2009 to December 2014, we retrospectively reviewed MRIs of 39 patients who had reconstructed ACL with double bundle technique. The subjects were examined using 3D isotropic proton-density sequence and routine two-dimensional (2D) sequence on 3.0T scanner. The MR images were qualitatively evaluated for the intraarticular curvature, graft tear, bony impingement, intraosseous tunnel cyst, and synovitis of anteromedial and posterolateral bundles (AMB, PLB). In addition anterior tibial translation, PCL angle, PCL ratio were quantitatively measured. KT arthrometric values were reviewed for anterior tibial translation as positive or negative. The second look arthroscopy results including tear and laxity were reviewed. Results: Significant correlations were found between an AMB tear on 3D-isotropic proton density MR images and arthroscopic proven AMB tear or laxity (P < 0.05). Also, a significant correlation was observed between increased PCL ratio on 3D isotropic MRI and the arthroscopic findings such as tear, laxities of grafts (P < 0.05). KT arthrometric results were found to be significantly correlated with AMB tears (P < 0.05) and tibial tunnel cysts (P < 0.05). Conclusion: An AMB tear on 3D-isotropic MRI was correlated with arthroscopic results qualitatively and quantitatively. 3D isotropic MRI findings can aid the evaluation of ACL grafts after double bundle reconstruction.

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

Evaluation of the Usefulness of PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) Technique to Reduce the Magnetic susceptibility artifact (Magnetic susceptibility artifact를 줄이기 위한 PROPELLER 확산강조영상기법의 유용성에 대한 평가)

  • Cho, Jae-Hwan
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • This study attempted to examine whether the propeller diffusion weighted image method may remove magnetic susceptibility artifacts caused by metallic materials. A comparison of occurrence rates of magnetic susceptibility artifacts in the four regions, both temporal lobes, pons, and orbit, between b = 0 and b = 1,000 s/mm2 images was made after obtaining echo-planar diffusion weighted image, propeller diffusion weighted image, and ADC map images, respectively, from a total of 20 patients who had MRI shots taken of their brain and were found to be with retained metallic foreign bodies within their teeth using a 3.0T MR scanner. In the case of echo-planar diffusion weighted image technique, the presence of metallic materials may bring in some limits on accurate diagnosis due to magnetic susceptibility artifacts, while the propeller diffusion weighted image technique where magnetic susceptibility artifacts decrease is expected to be more useful in ensuring accurate diagnosis in the clinical context.

Comprehensive Updates in the Role of Imaging for Multiple Myeloma Management Based on Recent International Guidelines

  • Koeun Lee;Kyung Won Kim;Yousun Ko;Ho Young Park;Eun Jin Chae;Jeong Hyun Lee;Jin-Sook Ryu;Hye Won Chung
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1497-1513
    • /
    • 2021
  • The diagnostic and treatment methods of multiple myeloma (MM) have been rapidly evolving owing to advances in imaging techniques and new therapeutic agents. Imaging has begun to play an important role in the management of MM, and international guidelines are frequently updated. Since the publication of 2015 International Myeloma Working Group (IMWG) criteria for the diagnosis of MM, whole-body magnetic resonance imaging (MRI) or low-dose whole-body computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography/CT have entered the mainstream as diagnostic and treatment response assessment tools. The 2019 IMWG guidelines also provide imaging recommendations for various clinical settings. Accordingly, radiologists have become a key component of MM management. In this review, we provide an overview of updates in the MM field with an emphasis on imaging modalities.

The Effectiveness of CT and MRI Contrast Agent for SUV in 18F-FDG PET/CT Scanning (18F-FDG PET/CT 검사에서 정량분석에 관한 CT와 MRI 조영제의 효과)

  • Cha, Sangyoung;Cho, Yonggwi;Lee, Yongki;Song, Jongnam;Choi, Namgil
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • In this study, among various factors having influence on SUV, we intended to compare and analyze the change of SUV using CT(4 type) and MRI(3 type) contrast agents which are commercialized now. We used Discovery 690 PET/CT(GE) and NEMA NU2 - 1994 PET phantom as experimental equipment. We have conducted a study as follows; first, we filled distilled water to phantom about two-thirds and injected radioisotope(18F-FDG 37 MBq), contrast agent. Second, we mixed CT contrast agent with distilled water and MRI contrast agent with that water separately. And then, we stirred the fluid and filled distilled water fully not to make air bubble. In emission scan, we had 15minutes scanning time after 40 minutes mixing contrast agent with distilled water. In transmission scan, we used CT scanning and its measurement conditions were tube voltage 120 kVp, tube current 40 mA, rotation time 0.5 sec, slice thickness 3.27 mm, DFOV 30 cm. Analyzing results, we set up some ROIs in 10th, 15th, 20th, 25th, 30th slice and measured SUVmean, SUVmax. Consequently, all images mixed 3 types of MRI contrast agent with distilled water have high SUVmean as compared with pure FDG image but there was no statistical significance. In SUVmax, they have high score and there was statistical significance. And other 4 images mixed 4 types of CT contrast agent with distilled water have significance in both SUVmean and SUVmax. Attenuation correction in PET/CT has been executed through various methods to make high quality image. But we figured out that using CT and MRI contrast agents before PET/CT scanning could make distortion of image and decrease diagnostic value. In that reason, we have to sort out the priority of examination in hospital not to disturb other examination's results. Through this process, we will be able to give superior medical service to our customers.

Comparative Evaluations of Magnetic Resonance Image, Spiral Computed Tomography and Ultrasound in the Diasnosis of Experimental Diaphragmatic Rupture in the Rabbit (토끼의 횡격막 파열 진단에 있어서 자기공명영상, 나선형전산화단층촬영 및 초음파의 가치 비교)

  • 김학희;정승은;이배영;최병길;신경섭
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.154-161
    • /
    • 1997
  • Purpose: Traumatic rupture of the diaphragm is not easy to diagnose and often delayed. Delayed diagnosis of diaphragmatic rupture accompanied by higher chances of strangulation of herniated viscera which may result in higher morbility and mortality. The purpose of this study was to evaluate diagnostic accuracy of spiral CT, MRI and US for the diagnosis of diaphragmatic rupture in an animal model. Materials and Methods: Small, medium, and large sized transabdominal diaphragmatic ruptures were surgically made in experimental rabbits and then followed up with spiral CT, MR!, and US at 1 day, 3 day, and 1 week after operation. Results: US was superior to MR! or spiral CT in diagnosis of diaphragmatic rupture(P(0.05). The sensitivity and specificity were 94.4% and 92.9% for US, 54.0% and 85.7% for MRI, and 46.0% and 78.6% for spiral CT, respectively. The size of laceration was not related to diagnostic sensitivity in US. Sensitivity of MRI and spiral CT increased as the size of laceration were larger, but no statistical significance was present(P>0.05). All experimental animals developed pleural effusion or hemothorax one day after operation. In acute phase, US and MRI were more sensitive than spiral CT in detecting diaphragmatic rupture. Spiral CT was more sensitive than US and MRI in delayed phase but without statistical significance(P>0.05). In the experimental rabbits with accompanying visceral hernia through the diaphragmatic defect, diagnostic accuracy was found equally high among three image modalities(P>0.05). Conclusion: This study indicates that US is the most accurate diagnostic method in detecting injury to the diaphragm in a rabbit model. The findings obtained in this experimental study can be applied to the diaphragmatic rupture of human being.

  • PDF

Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence

  • Chae Jung Park;Jihoon Cha;Sung Soo Ahn;Hyun Seok Choi;Young Dae Kim;Hyo Suk Nam;Ji Hoe Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.21 no.12
    • /
    • pp.1334-1344
    • /
    • 2020
  • Objective: Compressed sensing (CS) has gained wide interest since it accelerates MRI acquisition. We aimed to compare the 3D post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition (VISTA) with CS (VISTA-CS) and without CS (VISTA-nonCS) in intracranial vessel wall MRIs (VW-MRI). Materials and Methods: From April 2017 to July 2018, 72 patients who underwent VW-MRI, including both VISTA-CS and VISTA-nonCS, were retrospectively enrolled. Wall and lumen volumes, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured from normal and lesion sites. Two neuroradiologists independently evaluated overall image quality and degree of normal and lesion wall delineation with a four-point scale (scores ≥ 3 defined as acceptable). Results: Scan coverage was increased in VISTA-CS to cover both anterior and posterior circulations with a slightly shorter scan time compared to VISTA-nonCS (approximately 7 minutes vs. 8 minutes). Wall and lumen volumes were not significantly different with VISTA-CS or VISTA-nonCS (interclass correlation coefficient = 0.964-0.997). SNR was or trended towards significantly higher values in VISTA-CS than in VISTA-nonCS. At normal sites, CNR was not significantly different between two sequences (p = 0.907), whereas VISTA-CS provided lower CNR in lesion sites compared with VISTA-nonCS (p = 0.003). Subjective wall delineation was superior with VISTA-nonCS than with VISTA-CS (p = 0.019), although overall image quality did not differ (p = 0.297). The proportions of images with acceptable quality were not significantly different between VISTA-CS (83.3-97.8%) and VISTA-nonCS (75-100%). Conclusion: CS may be useful for intracranial VW-MRI as it allows for larger scan coverage with slightly shorter scan time without compromising image quality.

Diagnostic Performance of Simulated Abbreviated MRI for Early-Stage Hepatocellular Carcinoma Screening: A Comparison to Conventional Dynamic Contrast-Enhanced MRI (초기 간암 선별 검사로서 단축 자기공명영상 검사의 진단능: 고식적 역동학적 자기공명영상검사와의 비교)

  • Eun Sol Lim;Sung Mo Kim;Sang Soo Shin;Suk Hee Heo;Jong Eun Lee;Yong Yeon Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1218-1230
    • /
    • 2021
  • Purpose To compare the per-patient diagnostic performance of simulated abbreviated MRI (AMRI) to that of conventional MRI (CMRI) with full-sequence dynamic gadoxetic acid (GA) enhancement for early-stage hepatocellular carcinoma (HCC) screening in high-risk patients. Materials and Methods A total of 201 consecutive patients at high-risk for HCC, who underwent 3T liver MRI, were included in this retrospective study. The AMRI protocol comprised T2-weighted imaging, hepatobiliary phase imaging after GA injection, and diffusion-weighted imaging. For each patient, two AMRI and CMRI image sets were independently reviewed by two radiologists. Inter-reader agreement was assessed using Cohen's kappa value. A composite reference standard was used to determine the diagnostic performance of each image set for each reader. Results A total of 93 HCCs were detected in 79 patients. The inter-reader agreement was almost perfect for both image sets (κ = 0.839, 0.948). In AMRI, the per-patient sensitivity and negative predictive values (NPV) were 94.9% and 96.4%, respectively. In CMRI, the per-patient sensitivity and NPV were 96.2% and 97.5%, respectively. Conclusion AMRI, using only three sequences, had a comparable diagnostic performance to CMRI in screening early-stage HCC. AMRI could be an alternative HCC screening tool for high-risk HCC patients.

Effects of Temperature Change on the Current Injected MRI (전류 주입 자기공명영상에 온도 변화가 미치는 영향)

  • 이수열;강현수;우응제;조민형
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2001
  • It is well known that the electrical impedance of biological tissues is very sensitive to their temperature. In this paper, we have analyzed the effects of temperature change on the phase of magnetic resonance images obtained with external current injection. It has been found that the local phase in the current injected magnetic resonance image can be changed noticeably when local temperature change appears at a part of the tissue. At the experiments with a 0.3 Tesla MRI system, we observed the local phase changes at the phantom images when the phantom temperature was varied between 25 -45$^{\circ}C$. We think that the current injection MRI technique can be used for in-vivo monitoring of the temperature inside biiological tissues if the relation between the local temperature and phase can be quantified.

  • PDF