DOI QR코드

DOI QR Code

Contrast-Enhanced High-Resolution Intracranial Vessel Wall MRI with Compressed Sensing: Comparison with Conventional T1 Volumetric Isotropic Turbo Spin Echo Acquisition Sequence

  • Chae Jung Park (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Jihoon Cha (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Sung Soo Ahn (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Hyun Seok Choi (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine) ;
  • Young Dae Kim (Department of Neurology, Yonsei University College of Medicine) ;
  • Hyo Suk Nam (Department of Neurology, Yonsei University College of Medicine) ;
  • Ji Hoe Heo (Department of Neurology, Yonsei University College of Medicine) ;
  • Seung-Koo Lee (Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine)
  • Received : 2020.02.16
  • Accepted : 2020.04.25
  • Published : 2020.12.01

Abstract

Objective: Compressed sensing (CS) has gained wide interest since it accelerates MRI acquisition. We aimed to compare the 3D post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition (VISTA) with CS (VISTA-CS) and without CS (VISTA-nonCS) in intracranial vessel wall MRIs (VW-MRI). Materials and Methods: From April 2017 to July 2018, 72 patients who underwent VW-MRI, including both VISTA-CS and VISTA-nonCS, were retrospectively enrolled. Wall and lumen volumes, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured from normal and lesion sites. Two neuroradiologists independently evaluated overall image quality and degree of normal and lesion wall delineation with a four-point scale (scores ≥ 3 defined as acceptable). Results: Scan coverage was increased in VISTA-CS to cover both anterior and posterior circulations with a slightly shorter scan time compared to VISTA-nonCS (approximately 7 minutes vs. 8 minutes). Wall and lumen volumes were not significantly different with VISTA-CS or VISTA-nonCS (interclass correlation coefficient = 0.964-0.997). SNR was or trended towards significantly higher values in VISTA-CS than in VISTA-nonCS. At normal sites, CNR was not significantly different between two sequences (p = 0.907), whereas VISTA-CS provided lower CNR in lesion sites compared with VISTA-nonCS (p = 0.003). Subjective wall delineation was superior with VISTA-nonCS than with VISTA-CS (p = 0.019), although overall image quality did not differ (p = 0.297). The proportions of images with acceptable quality were not significantly different between VISTA-CS (83.3-97.8%) and VISTA-nonCS (75-100%). Conclusion: CS may be useful for intracranial VW-MRI as it allows for larger scan coverage with slightly shorter scan time without compromising image quality.

Keywords

References

  1. Dieleman N, van der Kolk AG, Zwanenburg JJ, Harteveld AA, Biessels GJ, Luijten PR, et al. Imaging intracranial vessel wall pathology with magnetic resonance imaging: current prospects and future directions. Circulation 2014;130:192-201
  2. Mandell DM, Mossa-Basha M, Qiao Y, Hess CP, Hui F, Matouk C, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2017;38:218-229
  3. Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 2018;286:12-28
  4. van der Kolk AG, Zwanenburg JJ, Brundel M, Biessels GJ, Visser F, Luijten PR, et al. Intracranial vessel wall imaging at 7.0-T MRI. Stroke 2011;42:2478-2484
  5. Qiao Y, Steinman DA, Qin Q, Etesami M, Schar M, Astor BC, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30
  6. Hollingsworth KG. Reducing acquisition time in clinical MRI by data undersampling and compressed sensing reconstruction. Phys Med Biol 2015;60:R297-R322
  7. Jaspan ON, Fleysher R, Lipton ML. Compressed sensing MRI: a review of the clinical literature. Br J Radiol 2015;88:201504878
  8. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195
  9. Yoon JK, Kim MJ, Lee S. Compressed sensing and parallel imaging for double hepatic arterial phase acquisition in gadoxetate-enhanced dynamic liver magnetic resonance imaging. Invest Radiol 2019;54:374-382
  10. Cheng JY, Zhang T, Ruangwattanapaisarn N, Alley MT, Uecker M, Pauly JM, et al. Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging 2015;42:407-420
  11. Yoon JH, Lee SM, Kang HJ, Weiland E, Raithel E, Son Y, et al. Clinical feasibility of 3-dimensional magnetic resonance cholangiopancreatography using compressed sensing: comparison of image quality and diagnostic performance. Invest Radiol 2017;52:612-619
  12. Li B, Li H, Kong H, Dong L, Zhang J, Fang J. Compressed sensing based simultaneous black- and gray-blood carotid vessel wall MR imaging. Magn Reson Imaging 2017;38:214-223
  13. Suh CH, Jung SC, Lee HB, Cho SJ. High-resolution magnetic resonance imaging using compressed sensing for intracranial and extracranial arteries: comparison with conventional parallel imaging. Korean J Radiol 2019;20:487-497
  14. Zhu C, Tian B, Chen L, Eisenmenger L, Raithel E, Forman C, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 2018;31:457-467
  15. Yuan J, Usman A, Reid SA, King KF, Patterson AJ, Gillard JH, et al. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study. MAGMA 2018;31:183-190
  16. Mandell DM, Matouk CC, Farb RI, Krings T, Agid R, terBrugge K, et al. Vessel wall MRI to differentiate between reversible cerebral vasoconstriction syndrome and central nervous system vasculitis: preliminary results. Stroke 2012;43:860-862
  17. Edjlali M, Gentric JC, Regent-Rodriguez C, Trystram D, Hassen WB, Lion S, et al. Does aneurysmal wall enhancement on vessel wall MRI help to distinguish stable from unstable intracranial aneurysms? Stroke 2014;45:3704-3706
  18. Nagahata S, Nagahata M, Obara M, Kondo R, Minagawa N, Sato S, et al. Wall enhancement of the intracranial aneurysms revealed by magnetic resonance vessel wall imaging using three-dimensional turbo spin-echo sequence with motion-sensitized driven-equilibrium: a sign of ruptured aneurysm? Clin Neuroradiol 2016;26:277-283
  19. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, FillionRobin JC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012;30:1323-1341
  20. Zhang Z, Fan Z, Carroll TJ, Chung Y, Weale P, Jerecic R, et al. Three-dimensional T2-weighted MRI of the human femoral arterial vessel wall at 3.0 Tesla. Invest Radiol 2009;44:619-626
  21. Fan Z, Yang Q, Deng Z, Li Y, Bi X, Song S, et al. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Magn Reson Med 2017;77:1142-1150
  22. Jia S, Zhang L, Ren L, Qi Y, Ly J, Zhang N, et al. Joint intracranial and carotid vessel wall imaging in 5 minutes using compressed sensing accelerated DANTE-SPACE. Eur Radiol 2020;30:119-127
  23. Qiao Y, Guallar E, Suri FK, Liu L, Zhang Y, Anwar Z, et al. MR imaging measures of intracranial atherosclerosis in a population-based study. Radiology 2016;280:860-868
  24. Wu F, Ma Q, Song H, Guo X, Diniz MA, Song SS, et al. Differential features of culprit intracranial atherosclerotic lesions: a whole-brain vessel wall imaging study in patients with acute ischemic stroke. J Am Heart Assoc 2018;7:e009705
  25. Sharma SD, Fong CL, Tzung BS, Law M, Nayak KS. Clinical image quality assessment of accelerated magnetic resonance neuroimaging using compressed sensing. Invest Radiol 2013;48:638-645
  26. Sandilya M, Nirmala SR. Compressed sensing trends in magnetic resonance imaging. Eng Sci Technol Int J 2017;20:1342-1352
  27. Li B, Dong L, Chen B, Ji S, Cai W, Wang Y, et al. Turbo fast three-dimensional carotid artery black-blood MRI by combining three-dimensional MERGE sequence with compressed sensing. Magn Reson Med 2013;70:1347-1352
  28. Worters PW, Sung K, Stevens KJ, Koch KM, Hargreaves BA. Compressed-sensing multispectral imaging of the postoperative spine. J Magn Reson Imaging 2013;37:243-248