• Title/Summary/Keyword: MRI 소음

Search Result 20, Processing Time 0.033 seconds

Noise Exposure of Radiographer Caused by Magnetic Resonance Imaging(MRI) (자기공명영상(MRI) 검사 시 방사선사의 소음노출)

  • Gil, Jong-Won
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.11
    • /
    • pp.699-706
    • /
    • 2016
  • This study aimed to propose the necessity and system establishment of noise reduction facility via evaluating noise level exposed by the radiographer due to MRI scan. Noise measurements were carried out using at S general hospital in Daejeon using 1.5 Tesla MRI (7 exams) and 3.0 Tesla MRI (16 exams), while using SC-804 noise meter. The measurement distance was from the soundproof door of the MRI room to the radiographer which measured 100cm, and the measurement height, the height to the radiographer's ears when working, 100cm. The noise measured for each exam was an average of three measures per exam which observed the noise occurring in each sequence recorded every 20 seconds. As the results, the maximum of noise exposed by the radiographer is 73.3 dB(A), which is MRCP by the 3.0 Tesla device, and also the maximum of average noise is 66.9(3.1) dB(A), which is Myelogram by the 3.0 Tesla device. Average noise by each device is 61.9(4.1) dB(A) by the 3.0 Tesla device and 52.0(3.1) dB(A) by the 1.5 Tesla device, which comes to the result that the 3.0 Tesla MRI device is about 10 dB(A) degree higher(p <0.001). The noise level exposed by the radiographer does not affect auditory acuity, but the level is able to incur a non auditory effect. The reflect sound can be removed by installing curtains in the rear wall of MRI control room in order to reduce the noises, but, first of all, An institutional system is needed in order to prevent noise.

Active Noise Control for Target Point Inside Bore Using Property of MRI Noise (MRI 소음의 특성을 이용한 공동 내부 목표점의 능동소음 제어)

  • Lee, Nokhaeng;Park, Youngjin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Recently, MRI(magnetic resonance imager) scanner is continually used for medical diagnosis and many biomedical researches. When it operates, however, intense noise is generated. The SPL(sound pressure level) of the noise approaches 130 dB especially in 3 T(Tesla) MRI. Meanwhile, more than 3 T MRI scanners have been developed to get higher-resolution images, so louder noise is expected in the future. The intense noise makes patients feel nervous and uncomfortable. Moreover, it could possibly cause hearing loss to patient in extreme cases. For this reason, some active noise control systems have been researched. One of them used feedback Filtered-X LMS(FXLMS) algorithm which is able to control only narrowband noises and possible to diverge in severe case. In this paper, we determine the property of MRI noise. Using the property, we applied a method of open-loop and adaptive control for reducing MRI noise at target point inside bore. We verified performance of the method with computer simulation and preliminary experiment. The results demonstrate that the method can effectively reduce MRI noise at target point.

The Influence of MR Gradient Acoustic Noise on fMRI (MR 경사 자계 소음이 뇌기능 영상에 미치는 영향)

  • S. C. Chung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therfore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding(visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain functions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

A The Study on Patients and Radiological technologists of Noise Effects Generated During MRI Scanning (자기공명영상검사 시 발생하는 소음이 환자와 방사선사에 미치는 영향에 관한 연구)

  • Song, hyun-og;Lim, cheong-hwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.153-154
    • /
    • 2015
  • 현재 의료장비는 진단의 향상을 위해 보다 나은 영상을 획득하기 위하여 개발, 발전되어지고 있다. MRI장비 또한 좋은 영상을 획득하기 위해 소프트웨어 및 하드웨어가 발전되고 있다. 그 중의 하나가 자자의 세기가 점차 강한 장비로 변화되는 것이다. 고자장의 장비는 좋은 영상을 획득할 수 있는 장점이 있는 반면 폐쇄적 공포감, 소음 등의 단점 또한 존재한다. 이에 본 연구에서는 MRI 장비 단점 중 하나인 소음이 환자에게 심리적, 정신적으로 어떠한 영향을 미치는지를 설문조사한다. 그리고 이 장비를 사용하는 방사선사의 소음에 대한 인지정도를 설문조사하여 알아보고자한다. 따라서 이 연구는 MRI 검사 시 환자와 방사선사에게 소음에 대한 인식 향상 및 보호 제도 마련의 기초를 제공하고자 한다.

  • PDF

Magnetic Resonance Imaging uses 3D Printed Material of Headset (Noise Reduction Effect) (자기공명영상 검사 시 3D 프린팅 재료를 이용한 헤드셋 연구 (소음저감 효과))

  • Choi, Woo Jeon;Kim, Dong Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.335-341
    • /
    • 2018
  • With the improvement of medical state, patients' expectations for the most advanced medical equipment are increasing. Particularly, Magnetic Resonance Image (MRI) is used as one of the core image diagnosis methods in all clinical area. However, it has been reported that many of patients who go through the examination suffer from anxiety to the severe noise level during the examination. In this study, both the noise reduction evaluation of headsets with sound-blocking materials added to existing sound-absorbing materials and the existence of sound blocking materials as artifacts on the examination image are tested. An MRI test noise is recorded as a speaker by cross-ordination the sound material (sponge) and the sound material (acrylic plate, copper plate, and 3D copper plate) inside the headset made from 3D pring. A quantitative assessment of headsets showed that the average headset value was 81.8 dB. The average dB value of the most soundproof material combination(Copper, acrylic plate, sponge, sponge) headsets on headsets with added charactering material was measured at 70.4 dB, and MRI showed that the copper was diamagnetic substance and excluded. The second most soundproof headset(Sponge, acrylic plate, 3D copper plate, sponge) was measured at 70.6 dB and MRI showed no artifacts. The same simulation of the material printed with a 3D copper PLA containing approximately 40 % copper powder resulted in no artifacts, therefore, the material output as a 3D printing was better suited for use. For MRI related research, the mutual development of 3D printing is highly anticipated.

Evaluation on the stress using HRV according to elapsed time of MRI noise (HRV를 이용한 자기공명영상 소음의 시간 변화에 따른 스트레스 평가)

  • Ye, Soo-Young;Kim, Dong-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.2
    • /
    • pp.50-55
    • /
    • 2015
  • The noise of MRI shooting is 100dB loud and has an intensive psychological and physiological influences on the human body. ECG signals were measured by experimental methods, while wearing earplugs for 15 minutes in the stable state. Then the ECG signals were measured for 30 minutes while listening to about 100dB of sound in a MRI equipment. In this study, the heart rate variability of men and women was analyzed according to the MRI noise stress level through the frequency analysis. As the MRI noise level is about 100dB, HRV analysis resulted in an imbalance between the sympathetic and parasympathetic. During the period from the resting state up to 10 minutes, the maximum stress state was shown. This study will encourage MRI workers to take interests in hearing protection for the patient and to make objective indicators about MRI noises.

A Study of the Effect of Acoustic Noise Attenuator on Auditory Functional MRI (소음 감쇠기를 이용한 청각의 뇌기능 자기공명영상)

  • Kim, S.H.;Kim, I.S.;Lee, J.J.;Park, J.A.;Lee, Y.J.;Yeo, J.R.;Bae, S.J.;Lee, S.H.;Chang, Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.2
    • /
    • pp.134-139
    • /
    • 2005
  • Purpose : To evaluate the usefulness of acoustic noise attenuator on auditory fMRI examination. Materials and methods : The acoustic noise attenuator consists of mask, earmuff and silicon earplug. The soft polyurethane sheet and polyurethane form , which has a good soundproof characteristic were used for mask and earmuff. Auditory fMRI experiments of 500 Hz pure tone stimulation were performed in three different cases; first all of mask, earmuff and earplug, secondly earmuff and earplug only and finally without attenuator in 4 normal hearing volunteers. For data acquisition, BOLD MR imaging technique was employed at a 1.5T MR scanner equipped with high performance gradient system. The raw data were analyzed using a SPM-99 analysis software and the activation maps were obtained. Results : In case of all items of acoustic attenuator used, the results revealed that activation was focused on primary auditory area. When only earmuff and earplug were used, the results showed that the activation spread over primary auditory and secondary associative areas. Last, when no device used, only weak activation was observed on the right auditory cortex. Conclusion : It is expected that the acoustic noise attenuator, which consists of earplugs, earmuffs and mask, is a very useful device in auditory fMRI study.

  • PDF