• Title/Summary/Keyword: MRI 모델

Search Result 126, Processing Time 0.023 seconds

Model-based Gradient Compensation in Spiral Imaging (나선주사영상에서 모델 기반 경사자계 보상)

  • Cho, S.H.;Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : A method to estimate a real k-space trajectory based on a circuit model of the gradient system is proposed for spiral imaging. The estimated k-space trajectory instead of the ideal trajectory is used in the reconstruction to improve the image quality in the spiral imaging. Materials and Methods : Since the gradient system has self resistance, capacitance, and inductance, as well as the mutual inductance between the magnet and the gradient coils, the generated gradient fields have delays and transient responses compared to the input waveform to the gradient system. The real gradient fields and their trajectory in k-space play an important role in the reconstruction. In this paper, the gradient system is modeled with R-L-C circuits, and real gradient fields are estimated from the input to the model. An experimental method to determine the model parameters (R, L, C values) is also suggested from the quality of the reconstructed image. Results : The gradient fields are estimated from the circuit model of the gradient system at 1.5 Tesla MRI system. The spiral trajectory obtained by the integration of the estimated gradient fields is used for the reconstruction. From experiments, the reconstructed images using the estimated trajectory show improved uniformity, reduced overshoots near the edges, and enhanced resolutions compared to those using the ideal trajectory without model. Conclusion : The gradient system was successfully modeled by the R-L-C circuits. Much improved reconstruction was achieved in the spiral imaging using the trajectory estimated by the proposed model.

  • PDF

Regression Models Predicting Trunk Muscles' PCSAs of Korean People (요추 부위 인체역학 모델을 위한 한국인 몸통 근육의 생리학적 단면적 추정 회귀 모델)

  • Kim, Ji-Hyun;Song, Young-Woong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • This study quantified 7 trunk muscles' physiological cross-sectional areas (PCSAs) and developed prediction equations for the physiological cross-sectional area as a function of anthropometic variables for Korean people. Nine females and nine males were participated in the magnetic resonance imaging (MRI) scans approximately from S1 through T8. Muscle fiber angle corrected cross-sectional areas (anatomical cross sectional areas: ACSAs) were recorded at each vertebral level and maximum value of ACSAs were determined as physiological cross sectional area (PCSA). There was a significant gender difference in PCSAs of all muscles (p<0.05). Stepwise linear regression techniques using anthropometric measures (e.g., height, weight, trunk depths and widths) as independent variables were conducted to develop prediction equations for the PCSA for each muscle. For males, six muscles' significant prediction equations (p<0.05) were developed except quadratus lumborum. For females, three prediction equations were developed for psoas, quadratus lumborum, and erector spinae muscles (p<0.05).

Prediction of overall survival for patients with malignant glioma using convolutional neural network (합성곱 신경망 모델을 이용한 악성 뇌교종 환자 예후 예측)

  • Kwon, Junmo;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.297-299
    • /
    • 2022
  • Malignant glioma has a poor prognosis with the reported median survival of between 6 months to 14 months. Thus, it is crucial to predict the accurate survival of patients with malignant glioma. In this paper, we propose a convolutional neural network to predict the overall survival and age of the patients. A total of four MRI modalities, T1, T1-contrast enhanced, T2, and fluid-attenuated inversion recovery, which effectively capture spatial characteristics of malignant glioma, were used as input images. Age is an important factor impacting the overall survival, thus incorporating it into the model will thereby improve the performance of the proposed model. Our model successfully predicted overall survival and age of the patients with pearson correlation coefficients of 0.1748 and 0.3056, respectively.

  • PDF

Delineating the Prostate Boundary on TRUS Image Using Predicting the Texture Features and its Boundary Distribution (TRUS 영상에서 질감 특징 예측과 경계 분포를 이용한 전립선 경계 분할)

  • Park, Sunhwa;Kim, Hoyong;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.17 no.6
    • /
    • pp.603-611
    • /
    • 2016
  • Generally, the doctors manually delineated the prostate boundary seeing the image by their eyes, but the manual method not only needed quite much time but also had different boundaries depending on doctors. To reduce the effort like them the automatic delineating methods are needed, but detecting the boundary is hard to do since there are lots of uncertain textures or speckle noises. There have been studied in SVM, SIFT, Gabor texture filter, snake-like contour, and average-shape model methods. Besides, there were lots of studies about 2 and 3 dimension images and CT and MRI. But no studies have been developed superior to human experts and they need additional studies. For this, this paper proposes a method that delineates the boundary predicting its texture features and its average distribution on the prostate image. As result, we got the similar boundary as the method of human experts.

An Empirical Study on Quantitative Evaluation of Cognitive Function (인지기능의 정량적 평가를 위한 측정 모델 소프트웨어 개발 및 실험적 검증 연구)

  • Ryu, Wan-Seok;Kim, Hyung-Gun;Chung, Sung-Taek
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • Imaging studies using MRI, PET, and/or MEG have been primary evaluation methods to quantitatively assess cognitive function. Recent advances in computational technology and information technology may allow a novel evaluation methodology to quantitate cognitive function more cost-effectively. In this study, we developed a software package composed of a series of tests to evaluate cognitive ability combined with a user-friendly touch screen input device. This cognitive assessment tool can quantitate concentration, numeric memory, associative memory, topological memory, visual and muscular reaction, and acoustic reaction over a relatively short testing time. We performed an empirical study on eighty normal subjects aged 20 and 59 years old using the developed evaluation methods. Age-related cognitive deterioration after 40 years old was confirmed. There was no difference in cognitive ability between male and female in the same age group. This study demonstrates the feasibility of a simple but effective evaluation software tool to quantitatively assess cognitive ability. This methodology may provide improved accessibility and reduced costs to perform cognitive function studies to compare between various subject groups.

The neural mechanism of distributed and focused attention and their relation to statistical representation of visual displays (분산주의와 초점주의의 신경기제 및 시각 통계표상과의 관계)

  • Chong, Sang-Chul;Joo, Sung-Jun
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.4
    • /
    • pp.399-415
    • /
    • 2007
  • Many objects are always present in a visual scene. Since the visual system has limited capacity to process multiple stimuli at a time, how to cope with this informational overload is one of the important problems to solve in visual perception. This study investigated the suppressive interactions among multiple stimuli when attention was directed to either one of the stimuli or all of them. The results indicate that suppressive interactions among multiple circles were reduced in V4 when subjects paid attention to one of the four locations, as compared to the unattended condition. However, suppressive interactions were not reduced when they paid attention to all four items as a set, in order to compute their mean size. These results suggest that whereas focused attention serves to later out irrelevant information, distributed attention provides an average representation of multiple stimuli.

  • PDF

Comparative Study of the Magnetic Resonance Imaging in Myocardial Infarction model (심근경색 모델에서 자기공명영상에 대한 비교 연구)

  • Lim, Cheong-Hwan;Jung, Hong-Ryang;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.19-22
    • /
    • 2001
  • The purpose of this study is to evaluate time course of signal enhancement on Gadomer-17 enhance MRI, and to correlate the size of enhanced area with that of the infarct area on 2'3'5'-triphenyl tetrazolium chloride(TTC) histochemical examination for the assessment of myocardial viability in reperfused Myocardial Infarction in a cat model. Tan cats(average weight: 3.8 kg) which had undergone 90 minutes of occlusion of the LAD followed by 90 minutes of reperfusion underwent MR T2-weighted imaging, and T1-weighted imaging, enhanced T1-weighted imaging. We used 1.5T Magneton Vision MRI system(Siemens, Erlangen, Germany). Signal intensities were measured in the enhanced and non-enhanced areas of enhanced T1-weighted imaging. and TTC histochemical staining the size of the abnormal signal area on each image was compared with that of the infarct area. Maximum enhancement was detected during a $40{\sim}60$ minute period with an average enhancement of $168{\pm}9.9%$ of normal myocardium. TTC staining revealed that the size of the high signal area on T2-weighted images and of the enhanced area on enhanced T1-weighted images was greater than that of the infarct area($T2=48.1%{\pm}3.7$, enhanced $T1=47.2%{\pm}2.6$, TTC $staining=38.7%{\pm}3.1$ ; p<0.05). In reperfused Myocardial Infarction in a cat model, enhanced MR imaging delineates reversibly and irreversibly damaged myocardium, with a strong enhancement and a broad temporal window. We may therefore expect that enhanced MR image is useful for demonstrating myocardial injury.

  • PDF

Construction of 3D Geometric Surface Model from Laminated CT Images for the Pubis (치골 부위의 CT 적층 영상을 활용한 3D 기하학적 곡면 모델로의 가공)

  • Hwang, Ho-Jin;Mun, Du-Hwan;Hwang, Jin-Sang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.3
    • /
    • pp.234-242
    • /
    • 2010
  • 3D CAD technology has been extended to a medical area including dental clinic beyond industrial design. The 2D images obtained by CT(Computerized Tomography) and MRI(Magnetic Resonance Imaging) are not intuitive, and thus the volume rendering technique, which transforms 2D data into 3D anatomic information, has been in practical use. This paper has focused on a method and its implementation for forming 3D geometric surface model from laminated CT images of the pubis. The implemented system could support a dental clinic to observe and examine the status of a patient's pubis before implant surgery. The supplement of 3D implant model would help dental surgeons settle operation plans more safely and confidently. It also would be utilized with teaching materials for a practice and training.

Oral and Maxillofacial Surgery Planning using 3D Clinical Model (3D 모델을 이용한 구강악면안면 외상환자수술 계획수립)

  • Kim, N.K.;Lee, D.H.;Kim, J.H.;Min, B.G.;Kim, Y.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.277-278
    • /
    • 1998
  • CT/MRI images were frequently taken to evaluate the anatomic structure and disease status, and to plan the treatment modality for oral and maxillofacial surgery. However, surgeons have many difficulties in reading and understanding 2D images without long time experiences. This study presents the method of 3D reconstruction with fine CT slices and its clinical application. We applied this method a clinical patient with oral and maxillofacial trauma and produced 3D reconstructed model which shows the fracture line in panfacial area and bone defect.

  • PDF

Deep Learning-Based Chest X-ray Corona Diagnostic Algorithm (딥러닝 기반 흉부엑스레이 코로나 진단 알고리즘)

  • Kim, June-Gyeom;Seo, Jin-Beom;Cho, Young-Bok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.73-74
    • /
    • 2021
  • 코로나로 인해 X-ray, CT, MRI와 같은 의료영상 분야에서 딥러닝을 많이 접목시키고 있다. 간단히 접할 수 있는 X-ray 영상으로 코로나 진단을 위해 CNN, R-CNN 등과 같은 영상 딥러닝 분야에서 많은 연구가 진행되고 있다. 의료영상 기반 딥러닝 학습은 바이오마커를 정확히 찾아내고, 최소한의 손실률과 높은 정확도를 필요로한다, 따라서 본 논문에서는 높은 정확도를 위한 학습 모델을 선정하고 실험을 진행하였다.

  • PDF