Prediction of overall survival for patients with malignant glioma using convolutional neural network

합성곱 신경망 모델을 이용한 악성 뇌교종 환자 예후 예측

  • Kwon, Junmo (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Park, Hyunjin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 권준모 (성균관대학교 전자전기컴퓨터공학과) ;
  • 박현진 (성균관대학교 전자전기컴퓨터공학과)
  • Published : 2022.10.03

Abstract

Malignant glioma has a poor prognosis with the reported median survival of between 6 months to 14 months. Thus, it is crucial to predict the accurate survival of patients with malignant glioma. In this paper, we propose a convolutional neural network to predict the overall survival and age of the patients. A total of four MRI modalities, T1, T1-contrast enhanced, T2, and fluid-attenuated inversion recovery, which effectively capture spatial characteristics of malignant glioma, were used as input images. Age is an important factor impacting the overall survival, thus incorporating it into the model will thereby improve the performance of the proposed model. Our model successfully predicted overall survival and age of the patients with pearson correlation coefficients of 0.1748 and 0.3056, respectively.

악성 뇌교종은 예후가 매우 나쁜 질병으로 평균 생존 기간은 6개월에서 14개월 사이로 보고되어 있다. 따라서 악성 뇌교종을 가진 환자들에게는 정확한 예후 예측이 요구된다. 본 논문에서는 악성 뇌교종을 가진 환자의 예후와 연령을 동시에 예측하는 합성곱 신경망 모델을 제안한다. 악성 뇌교종의 영상 특성을 효과적으로 파악할 수 있는 네 가지 자기공명영상인 T1, T1-contrast enhanced, T2, fluid-attenuated inversion recovery 영상을 입력 데이터로 이용하였다. 예후 예측에 가장 중요한 환자의 연령을 고려함으로써 신경망 모델의 예후 예측 성능이 높아질 것으로 기대된다. 학습된 모델을 검증 데이터에 적용한 결과 환자의 예후와 연령의 피어슨 상관계수가 각각 0.1748, 0.3056으로 나타난 것을 확인하였다.

Keywords

Acknowledgement

This research was supported by National Research Foundation (NRF-2020M3E5D2A01084892), Institute for Basic Science (IBS-R015-D1), Ministry of Science and ICT (IITP-2020-2018-0-01798), AI Graduate School Support Program (2019-0-00421), ICT Creative Consilience program (IITP-2020-0-01821), and the Artificial Intelligence Innovation Hub program (2021-0-02068).