• Title/Summary/Keyword: MRCDI

Search Result 2, Processing Time 0.014 seconds

Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI) (3차원 자기공명 전류밀도 영상법의 수치적 해석)

  • B.I. Lee;S.H. Oh;E.J. Woo;G. Khang;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.

Magnetic Resonance Imaging of a Current Density Component

  • Oh, Suk-Hoon;Park, Tae-Seok;Han, Jae-Yong;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.183-188
    • /
    • 2004
  • Magnetic resonance current density imaging (MRCDI) is a useful method for measuring electrical current density distribution inside an object. To avoid object rotations during the conventional MRCDI scans, we have reconstructed current density component images by applying a spatial filter to the magnetic field data measured both inside and outside the object. To measure the magnetic field outside the object with MRI, we immersed the object in a water tank. To evaluate accuracy of the current density imaging, we have made a conductivity phantom with a corresponding finite element method model. We have compared the experimentally obtained current density images with the ones calculated by the finite element method. The average errors of the reconstructed current density images were 6.6 ∼ 45.4 % when the injected currents were 1 ∼ 24 mA. We expect that the current density component imaging technique can be used in diverse biomedical applications such as electrical therapy system developments and biological electrical safety analysis.