• Title/Summary/Keyword: MR-dampers

Search Result 179, Processing Time 0.025 seconds

Control Performance Evaluation of Smart Mid-story Isolation System with RNN Model (RNN 모델을 이용한 스마트 중간층 면진시스템의 제어성능 평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.774-779
    • /
    • 2020
  • The seismic response reduction capacity of a smart mid-story isolation system was investigated using the RNN model in this study. For this purpose, an RNN model was developed to make a dynamic response prediction of building structures subjected to seismic loads. An existing tall building with a mid-story isolation system was selected as an example structure for realistic research. A smart mid-story isolation system was comprised of an MR damper instead of existing lead dampers. The RNN model predicted the seismic responses accurately compared to those of the FEM model. The simulation time of the RNN model can be reduced significantly compared to the FEM model. After the numerical simulations, the smart mid-story isolation system could effectively reduce the seismic responses of the existing building compared to the conventional mid-story isolation system.

Investigation of Adaptability of Smart Base Isolation System for Spacial Structures in Regions of Low-to-Moderate Seismicity (중약진지역 대공간 구조물에 대한 스마트 면진시스템의 적용성 검토)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.109-119
    • /
    • 2011
  • To date, a smart base isolation system has been developed in high seismicity region such as Japan, USA etc. Smart base isolation systems developed for structures in high seismicity region cannot directly applied to structures in regions of low-to-moderate seismicity such as Korea. Therefore, problems that occur by applying the smart base isolation system developed for the structures in high seismicity region to the structures in regions of low-to-moderate seismicity have been investigated in this study. To this end, a spacial arch structure was used as an example structure and MR dampers and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes were used for ground motions in regions of high and low-to-moderate seismicity. Based on numerical simulation results, it has been known that the capacity of smart base isolation system for the regions of low-to-moderate seismicity should be carefully designed because the base isolation effects of the smart base isolation system for high seismicity region is deteriorated when it is applied to the structures in regions of low-to-moderate seismicity.

Study of Integrated Optimal Design of Smart Top-Story Isolation and Building Structures in Regions of Low-to-Moderate Seismicity (중약진지역 구조물과 스마트 최상층 면진시스템의 통합최적설계에 대한 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2013
  • In order to reduce seismic responses of a structure, additional dampers and vibration control devices are generally considered. Usually, control performance of additional devices are investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a building structure with smart top-story isolation system has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions. The integrated optimal design method proposed in this study can provide various optimal designs that presents good control performance by appropriately reducing the amount of structural material and damping device.

Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure (하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

Decentralized civil structural control using real-time wireless sensing and embedded computing

  • Wang, Yang;Swartz, R. Andrew;Lynch, Jerome P.;Law, Kincho H.;Lu, Kung-Chun;Loh, Chin-Hsiung
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.321-340
    • /
    • 2007
  • Structural control technologies have attracted great interest from the earthquake engineering community over the last few decades as an effective method of reducing undesired structural responses. Traditional structural control systems employ large quantities of cables to connect structural sensors, actuators, and controllers into one integrated system. To reduce the high-costs associated with labor-intensive installations, wireless communication can serve as an alternative real-time communication link between the nodes of a control system. A prototype wireless structural sensing and control system has been physically implemented and its performance verified in large-scale shake table tests. This paper introduces the design of this prototype system and investigates the feasibility of employing decentralized and partially decentralized control strategies to mitigate the challenge of communication latencies associated with wireless sensor networks. Closed-loop feedback control algorithms are embedded within the wireless sensor prototypes allowing them to serve as controllers in the control system. To validate the embedment of control algorithms, a 3-story half-scale steel structure is employed with magnetorheological (MR) dampers installed on each floor. Both numerical simulation and experimental results show that decentralized control solutions can be very effective in attaining the optimal performance of the wireless control system.

The controllable fluid dash pot damper performance

  • Samali, Bijan;Widjaja, Joko;Reizes, John
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.209-224
    • /
    • 2006
  • The use of smart dampers to optimally control the response of structures is on the increase. To maximize the potential use of such damper systems, their accurate modeling and assessment of their performance is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces, damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a Fourier series technique. The technique treats this one-dimensional Navier-Stokes's momentum equation as a linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No's RD-1005-3) subjected to a sinusoidal stroke motion using a 'SCHENK' material testing machine in the Materials Laboratory at the University of Technology, Sydney.

Development of Rehabilitation Training System Using Unstable Flatform with Magneto-Rheological Damper (MR 댐퍼 적용 불안정판을 이용한 재활 훈련시스템 개발)

  • Choi, Youn-Jung;Piao, Yong-Jun;Heo, Min;Kwon, Tae-Kyu;Hwang, Ji-Hye;Kim, Dong-Wook;Kim, Nam-Gyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.197-204
    • /
    • 2008
  • The purpose of this paper was to develop a rehabilitation training system which is controlled by electric currents to the Magneto-Rheological dampers system. This system provided the function for the training of the unbalance of the lower extremities. 10 subjects executed the tracing and moving exercises which are presented through the display monitor and confirmed own the capability of performance on the task. The electromyographies of the four muscles in lower extremities were recorded and analyzed in the time and frequency domain the muscles of interest were rectus femoris, biceps femoris, gastrocnemius, tibialis anterior. The experimental results showed that subjects had a task under feedback mode then subjects improve the capability of performance, increasing the in time, decreasing the out time and the distance of body shift. The moving average EMG, spectral energy of four muscle is lower the feedback mode than the constant mode. This could aid the hemiplegic patients to train more easily.

A system model for reliability assessment of smart structural systems

  • Hassan, Maguid H.M.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.455-468
    • /
    • 2006
  • Smart structural systems are defined as ones that demonstrate the ability to modify their characteristics and/or properties in order to respond favorably to unexpected severe loading conditions. The performance of such a task requires a set of additional components to be integrated within such systems. These components belong to three major categories, sensors, processors and actuators. It is wellknown that all structural systems entail some level of uncertainty, because of their extremely complex nature, lack of complete information, simplifications and modeling. Similarly, sensors, processors and actuators are expected to reflect a similar uncertain behavior. As it is imperative to be able to evaluate the impact of such components on the behavior of the system, it is as important to ensure, or at least evaluate, the reliability of such components. In this paper, a system model for reliability assessment of smart structural systems is outlined. The presented model is considered a necessary first step in the development of a reliability assessment algorithm for smart structural systems. The system model outlines the basic components of the system, in addition to, performance functions and inter-relations among individual components. A fault tree model is developed in order to aggregate the individual underlying component reliabilities into an overall system reliability measure. Identification of appropriate limit states for all underlying components are beyond the scope of this paper. However, it is the objective of this paper to set up the necessary framework for identifying such limit states. A sample model for a three-story single bay smart rigid frame, is developed in order to demonstrate the proposed framework.

Performance Evaluation of Small Dampers Using SMG Fluid (SMG 유체를 이용한 소형댐퍼의 성능평가)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.211-219
    • /
    • 2019
  • In this study, SMG(Smart Material with Grease) was developed, which was improved the precipitation minute particle in grease during long term standstill. Also, small-sized cylinder damper equipped with an electromagnet in a piston was developed for using a performance evaluation of the damper with SMG and the dynamic load test, and damping force using Power model and Bingham model was derived in order to compare to the result of that of the damper. The data obtained from the dynamic load test were analyzed and plotted, and then a dynamic range was calculated to evaluate the usability of the damper with SMG. The performance of the damper with SMG was compared to the damping forse derived from the Power and Bingham model. The result of this evaluation shown that the usability of SMG damper was demonstrated by this test as a semi-active controlling equipment of small-sized damper.