• Title/Summary/Keyword: MR volumetry

Search Result 11, Processing Time 0.028 seconds

The Significance and Limitation of MR Volumetry: Comparison between Normal Adults and the Patients with Epilepsy and Hippocampal Sclerosis (MR 부피측정의 의의와 한계: 정상성인과 해마경화증 간질 환자의 비교)

  • 김홍대;장기현;한문희;김현집;이상건;이명철
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.1
    • /
    • pp.47-54
    • /
    • 2002
  • Purpose : Hippocampal atrophy is one of the characteristic pathologic findings of hippocampal sclerosis, for which MR imaging of the hippocampus is essential in the evaluation of hippocampal sclerosis. The purpose of this study is to present the normal MR volumetric data of the hippocampus in normal adult Korean and to compare those with MR volumetric data of hippocampus in patients with hippocampal s-clerosis, providing the diagnostic volume criteria of the hippocampal atrophy. Materials and methods : MR volumetry was performed in 30 normal adults and 28 patients with temporal lobe epilepsy whose final diagnosis was hippocampal sclerosis. The volumetric data were compared between sexes, right and left sides, and normal and abnormal hippocampus, and the volume criteria for the diagnosis of hippocampal atrophy was determined. Results : The mean $volumes({\pm}standard$ deviation) of normal Korean adult were $2.20{\pm}0.73\textrm{cm}^3$ (right) and $2.17{\pm}0.72\textrm{cm}^3$ (left) in male and $2.27{\pm}0.47{\;}\textrm{cm}^3$ (right) and $2.23{\pm}0.48\textrm{cm}^3$ (left) in female. The mean right-left differences were $0.14{\pm}0.11\textrm{cm}^3$ and $0.19{\pm}0.13\textrm{cm}^3$ in male and female, respectively. The MR volumetry showed no significant statistical differences between sexes and between right and left. The mean volume and standard deviation of the hippocampus in hippocampal sclerosis patients was $1.46{\pm}0.60{\;}\textrm{cm}^3$, and the right-left difference was $0.51{\pm}0.41\textrm{cm}^3$, In comparison of two volume distributions between normal adult group and hippocampal sclerosis patients group, the reasonable diagnostic volume criteria was $0.4{\;}\textrm{cm}^3$ as right-left volume difference, in which the sensitivity and specificity are 0.61 and 0.90. In all patients with right-left volume difference more than $0.4{\;}\textrm{cm}^3$, visual determination of unilateral hippocampal atrophy was possible. Conclusion : The MR-based hippocampal volumetry is a useful add-on of visual MR diagnosis, only when visual diagnosis of hippocampal sclerosis is difficult.

  • PDF

Comparison of Vendor-Provided Volumetry Software and NeuroQuant Using 3D T1-Weighted Images in Subjects with Cognitive Impairment: How Large is the Inter-Method Discrepancy?

  • Chung, Jieun;Kim, Hayoung;Moon, Yeonsil;Moon, Won-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.24 no.2
    • /
    • pp.76-84
    • /
    • 2020
  • Background: Determination of inter-method differences between clinically available volumetry methods are essential for the clinical application of brain volumetry in a wider context. Purpose: The purpose of this study was to examine the inter-method reliability and differences between the Siemens morphometry (SM) software and the NeuroQuant (NQ) software. Materials and Methods: MR images of 86 subjects with subjective or objective cognitive impairment were included in this retrospective study. For this study, 3D T1 volume images were obtained in all subjects using a 3T MR scanner (Skyra 3T, Siemens). Volumetric analysis of the 3D T1 volume images was performed using SM and NQ. To analyze the inter-method difference, correlation, and reliability, we used the paired t-test, Bland-Altman plot, Pearson's correlation coefficient, intraclass correlation coefficient (ICC), and effect size (ES) using the MedCalc and SPSS software. Results: SM and NQ showed excellent reliability for cortical gray matter, cerebral white matter, and cerebrospinal fluid; and good reliability for intracranial volume, whole brain volume, both thalami, and both hippocampi. In contrast, poor reliability was observed for both basal ganglia including the caudate nucleus, putamen, and pallidum. Paired comparison revealed that while the mean volume of the right hippocampus was not different between the two software, the mean difference in the left hippocampus volume between the two methods was 0.17 ml (P < 0.001). The other brain regions showed significant differences in terms of measured volumes between the two software. Conclusion: SM and NQ provided good-to-excellent reliability in evaluating most brain structures, except for the basal ganglia in patients with cognitive impairment. Researchers and clinicians should be aware of the potential differences in the measured volumes when using these two different software interchangeably.

Assessment of The Accuracy of The MR Abdominal Adipose Tissue Volumetry using 3D Gradient Dual Echo 2-Point DIXON Technique using CT as Reference

  • Kang, Sung-Jin
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.603-615
    • /
    • 2016
  • In this study, in order to determine the validity and accuracy of MR imaging of 3D gradient dual echo 2-point DIXON technique for measuring abdominal adipose tissue volume and distribution, the measurements obtained by CT were set as a reference for comparison and their correlations were evaluated. CT and MRI scans were performed on each subject (17 healthy male volunteers who were fully informed about this study) to measure abdominal adipose tissue volume. Two skilled investigators individually observed the images acquired by CT and MRI in an independent environment, and directly separated the total volume using region-based thresholding segmentation method, and based on this, the total adipose tissue volume, subcutaneous adipose tissue volume and visceral adipose tissue volume were respectively measured. The correlation of the adipose tissue volume measurements with respect to the observer was examined using the Spearman test and the inter-observer agreement was evaluated using the intra-class correlation test. The correlation of the adipose tissue volume measurements by CT and MRI imaging methods was examined by simple regression analysis. In addition, using the Bland-Altman plot, the degree of agreement between the two imaging methods was evaluated. All of the statistical analysis results showed highly statistically significant correlation (p<0.05) respectively from the results of each adipose tissue volume measurements. In conclusion, MR abdominal adipose volumetry using the technique of 3D gradient dual echo 2-point DIXON showed a very high level of concordance even when compared with the adipose tissue measuring method using CT as reference.

Expert Opinions and Recommendations for the Clinical Use of Quantitative Analysis Software for MRI-Based Brain Volumetry (뇌 자기공명영상 뇌용적 분석 소프트웨어의 임상적 적용에 대한 전문가 의견과 권고안)

  • Ji Young Lee;Ji Eun Park;Mi Sun Chung;Se Won Oh;Won-Jin Moon;Aging and Neurodegeneration Imaging (ANDI) Study Group, Korean Society of Neuroradiology (KSNR)
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.5
    • /
    • pp.1124-1139
    • /
    • 2021
  • The objective assessment of atrophy and the measurement of brain volume is important in the early diagnosis of dementia and neurodegenerative diseases. Recently, several MR-based volumetry software have been developed. For their clinical application, several issues arise, including the standardization of image acquisition and their validation of software. Additionally, it is important to highlight the diagnostic performance of the volumetry software based on expert opinions. We instituted a task force within the Korean Society of Neuroradiology to develop guidelines for the clinical use of MR-based brain volumetry software. In this review, we introduce the commercially available software and compare their diagnostic performances. We suggest the need for a standard protocol for image acquisition, the validation of the software, and evaluations of the limitations of the software related to clinical practice. We present recommendations for the clinical applications of commercially available software for volumetry based on the expert opinions of the Korean Society of Neuroradiology.

Effects of Various Intracranial Volume Measurements on Hippocampal Volumetry and Modulated Voxel-based Morphometry (두개강의 용적측정법이 해마의 용적측정술과 화소기반 형태계측술에 미치는 영향)

  • Tae, Woo-Suk;Kim, Sam-Soo;Lee, Kang-Uk;Nam, Eui-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.63-73
    • /
    • 2009
  • Purpose : To investigate the effects of various intracranial volume (ICV) measurement methods on the sensitivity of hippocampal volumetry and modulated voxel-based morphometry (mVBM) in female patients with major depressive disorder (MDD). Materials and Methods : T1 magnetic resonance imaging (MRI) data for 41 female subjects (21 MDD patients, 20 normal subjects) were analyzed. Hippocampal volumes were measured manually, and ICV was measured manually and automatically using the FreeSurfer package. Gray and white matter volumes were measured separately. Results : Manual ICV normalization provided the greatest sensitivity in hippocampal volumetry and mVBM, followed by FreeSurfer ICV, GWMV, and GMV. Manual and FreeSurfer ICVs were similar in normal subjects (p = 0.696), but distinct in MDD patients (p = 0.000002). Manual ICV-corrected total gray matter volume (p = 0.0015) and Manual ICV-corrected bilateral hippocampal volumes (right, p = 0.014; left, p = 0.004) were decreased significantly in MDD patients, but the differences of hippocampal volumes corrected by FreeSurfer ICV, GWMV, or GMV were not significant between two groups (p > 0.05). Only manual ICV-corrected mVBM analysis was significant after correction for multiple comparisons. Conclusion : The method of ICV measurement greatly affects the sensitivity of hippocampal volumetry and mVBM. Manual ICV normalization showed the ability to detect differences between women with and without MDD for both methods.

  • PDF

Clinically Available Software for Automatic Brain Volumetry: Comparisons of Volume Measurements and Validation of Intermethod Reliability

  • Ji Young Lee;Se Won Oh;Mi Sun Chung;Ji Eun Park;Yeonsil Moon;Hong Jun Jeon;Won-Jin Moon
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.405-414
    • /
    • 2021
  • Objective: To compare two clinically available MR volumetry software, NeuroQuant® (NQ) and Inbrain® (IB), and examine the inter-method reliabilities and differences between them. Materials and Methods: This study included 172 subjects (age range, 55-88 years; mean age, 71.2 years), comprising 45 normal healthy subjects, 85 patients with mild cognitive impairment, and 42 patients with Alzheimer's disease. Magnetic resonance imaging scans were analyzed with IB and NQ. Mean differences were compared with the paired t test. Inter-method reliability was evaluated with Pearson's correlation coefficients and intraclass correlation coefficients (ICCs). Effect sizes were also obtained to document the standardized mean differences. Results: The paired t test showed significant volume differences in most regions except for the amygdala between the two methods. Nevertheless, inter-method measurements between IB and NQ showed good to excellent reliability (0.72 < r < 0.96, 0.83 < ICC < 0.98) except for the pallidum, which showed poor reliability (left: r = 0.03, ICC = 0.06; right: r = -0.05, ICC = -0.09). For the measurements of effect size, volume differences were large in most regions (0.05 < r < 6.15). The effect size was the largest in the pallidum and smallest in the cerebellum. Conclusion: Comparisons between IB and NQ showed significantly different volume measurements with large effect sizes. However, they showed good to excellent inter-method reliability in volumetric measurements for all brain regions, with the exception of the pallidum. Clinicians using these commercial software should take into consideration that different volume measurements could be obtained depending on the software used.

Fully Automatic Segmentation and Volumetry on Brain MRI of Coronal Section

  • Sung, Yun-Chang;Song, Chang-Jun;Noh, Seung-Moo;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.441-445
    • /
    • 2000
  • This study is to segment white matter, gray matter, and cerebrospinal fluid(CSF) on a brain MR image of coronal section and to calculate the volume of each. First, we segmented the whole region of a brain from a black colored background, a skull and a fat layer. Then, we calculated the partial volume of each component, which was present in scanning finite thickness, with the arithmetical analysis of gray value from the internal region of a brain showing the blurring effects on the basis of the MR image forming principle. Calculated partial volumes of white matter, gray matter and CSF were used to determine the threshold for the segmentation of each component on a brain MR image showing the blurring effects. Finally, the volumes of segmented white matter, gray matter, and CSF were calculated. The result of this study can be used as the objective diagnostic method to determine the degree of brain atrophy of patients who have neurodegenertive diseases such as Alzheimer’s disease and cerebral palsy.

  • PDF

Region Segmentation and Volumetry of Brain MR Image represented as Blurred Gray Value by the Partial Volume Artifact (부분체적에 의해 번진 명암 값으로 표현된 뇌의 자기공명영상에 대한 영역분할 및 체적계산)

  • 성윤창;송창준;노승무;박종원
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.1006-1016
    • /
    • 2000
  • This study is to segment white matter, gray matter, and cerebrospinal fluid(CSF) on a brain MR image and to calculate the volume of each. First, after removing the background on a brain MR image, we segmented the whole region of a brain from a skull and a fat layer. Then, we calculated the partial volume of each component, which was present in scanning finite thickness, with the arithmetical analysis of gray value from the internal region of a brain showing the blurring effects on the basis of the MR image forming principle. Calculated partial volumes of white matter, gray matter and CSF were used to determine the threshold for the segmentation of each component on a brain MR image showing the blurring effects. Finally, the volumes of segmented white matter, gray matter, and CSF were calculated. The result of this study can be used as the objective diagnostic method to determine the degree of brain atrophy of patients who have neurodegenerative diseases such as Alzheimer's disease and cerebral palsy.

  • PDF

Dementia Classification by Distance Analysis from the Central Coronal Plane of the Brain Hippocampus (뇌 해마의 관상면 중심점으로부터 거리분석에 따른 치매분류)

  • Choi, Boo-Kyeong;So, Jae-Hong;Son, Young-Ju;Madusanka, Nuwan;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.147-157
    • /
    • 2018
  • Alzheimer's disease has the significant factors for the both specific and characteristic features according to the disease progressing that are the volumetry and surface area by the brain hippocampus shrinking and thinning. However, we have suggested a shape analysis to calculate the variance by the roughness, coarseness or uneven surface on 3D MR images. For the reasons we have presented two methods: the first method is the distance calculation from major axis to edge points and the second method is the distance calculation from centroidal point to edge points on a coronal plane. Then we selected the shortest distance and the longest distance in each slice and analyzed the ANOVA and average distances. Consequently we obtained the available and great results by the longest distance of the axial and centroidal point. The results of average distances were 44.85(AD), 45.04(MCI) and 49.31(NC) from the axial points and 39.30(AD), 39.58(MCI) and 44.78(NC) from centroidal points respectively. Finally the distance variations for the easily recognized visualization were shown by the color mapping. This research could be provided an indicator of biomarkers that make diagnosis and prognosis the Alzheimer's diseases in the future.

Intra-Rater and Inter-Rater Reliability of Brain Surface Intensity Model (BSIM)-Based Cortical Thickness Analysis Using 3T MRI

  • Jeon, Ji Young;Moon, Won-Jin;Moon, Yeon-Sil;Han, Seol-Heui
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.3
    • /
    • pp.168-177
    • /
    • 2015
  • Purpose: Brain surface intensity model (BSIM)-based cortical thickness analysis does not require complicated 3D segmentation of brain gray/white matters. Instead, this technique uses the local intensity profile to compute cortical thickness. The aim of the present study was to evaluate intra-rater and inter-rater reliability of BSIM-based cortical thickness analysis using images from elderly participants. Materials and Methods: Fifteen healthy elderly participants (ages, 55-84 years) were included in this study. High-resolution 3D T1-spoiled gradient recalled-echo (SPGR) images were obtained using 3T MRI. BSIM-based processing steps included an inhomogeneity correction, intensity normalization, skull stripping, atlas registration, extraction of intensity profiles, and calculation of cortical thickness. Processing steps were automatic, with the exception of semiautomatic skull stripping. Individual cortical thicknesses were compared to a database indicating mean cortical thickness of healthy adults, in order to produce Z-score thinning maps. Intra-class correlation coefficients (ICCs) were calculated in order to evaluate inter-rater and intra-rater reliabilities. Results: ICCs for intra-rater reliability were excellent, ranging from 0.751-0.940 in brain regions except the right occipital, left anterior cingulate, and left and right cerebellum (ICCs = 0.65-0.741). Although ICCs for inter-rater reliability were fair to excellent in most regions, poor inter-rater correlations were observed for the cingulate and occipital regions. Processing time, including manual skull stripping, was $17.07{\pm}3.43min$. Z-score maps for all participants indicated that cortical thicknesses were not significantly different from those in the comparison databases of healthy adults. Conclusion: BSIM-based cortical thickness measurements provide acceptable intra-rater and inter-rater reliability. We therefore suggest BSIM-based cortical thickness analysis as an adjunct clinical tool to detect cortical atrophy.