DOI QR코드

DOI QR Code

Clinically Available Software for Automatic Brain Volumetry: Comparisons of Volume Measurements and Validation of Intermethod Reliability

  • Ji Young Lee (Department of Radiology, Hanyang University Medical Center) ;
  • Se Won Oh (Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Mi Sun Chung (Department of Radiology, Chung-Ang University Hospital) ;
  • Ji Eun Park (Department of Radiology, Asan Medical Center) ;
  • Yeonsil Moon (Department of Neurology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Hong Jun Jeon (Department of Psychiatry, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Won-Jin Moon (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine)
  • 투고 : 2020.03.01
  • 심사 : 2020.06.17
  • 발행 : 2021.03.01

초록

Objective: To compare two clinically available MR volumetry software, NeuroQuant® (NQ) and Inbrain® (IB), and examine the inter-method reliabilities and differences between them. Materials and Methods: This study included 172 subjects (age range, 55-88 years; mean age, 71.2 years), comprising 45 normal healthy subjects, 85 patients with mild cognitive impairment, and 42 patients with Alzheimer's disease. Magnetic resonance imaging scans were analyzed with IB and NQ. Mean differences were compared with the paired t test. Inter-method reliability was evaluated with Pearson's correlation coefficients and intraclass correlation coefficients (ICCs). Effect sizes were also obtained to document the standardized mean differences. Results: The paired t test showed significant volume differences in most regions except for the amygdala between the two methods. Nevertheless, inter-method measurements between IB and NQ showed good to excellent reliability (0.72 < r < 0.96, 0.83 < ICC < 0.98) except for the pallidum, which showed poor reliability (left: r = 0.03, ICC = 0.06; right: r = -0.05, ICC = -0.09). For the measurements of effect size, volume differences were large in most regions (0.05 < r < 6.15). The effect size was the largest in the pallidum and smallest in the cerebellum. Conclusion: Comparisons between IB and NQ showed significantly different volume measurements with large effect sizes. However, they showed good to excellent inter-method reliability in volumetric measurements for all brain regions, with the exception of the pallidum. Clinicians using these commercial software should take into consideration that different volume measurements could be obtained depending on the software used.

키워드

참고문헌

  1. Moon WJ, Kim HJ, Roh HG, Han SH. Atrophy measurement of the anterior commissure and substantia innominata with 3T high-resolution MR imaging: does the measurement differ for patients with frontotemporal lobar degeneration and Alzheimer disease and for healthy subjects? AJNR Am J Neuroradiol 2008;29:1308-1313
  2. Moon Y, Moon WJ, Kim H, Han SH. Regional atrophy of the insular cortex is associated with neuropsychiatric symptoms in Alzheimer's disease patients. Eur Neurol 2014;71:223-229
  3. Park M, Moon WJ. Structural MR imaging in the diagnosis of Alzheimer's disease and other neurodegenerative dementia: current imaging approach and future perspectives. Korean J Radiol 2016;17:827-845
  4. Whitwell JL, Josephs KA, Murray ME, Kantarci K, Przybelski SA, Weigand SD, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008;71:743-749
  5. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement 2018;14:535-562
  6. Ross DE, Ochs AL, DeSmit ME, Seabaugh JM, Havranek MD; Alzheimer's Disease Neuroimaging Initiative. Man versus machine part 2: comparison of radiologists' interpretations and NeuroQuant Measures of brain asymmetry and progressive atrophy in patients with traumatic brain injury. J Neuropsychiatry Clin Neurosci 2015;27:147-152
  7. Tanpitukpongse TP, Mazurowski MA, Ikhena J, Petrella JR; Alzheimer's Disease Neuroimaging Initiative. Predictive utility of marketed volumetric software tools in subjects at risk for Alzheimer disease: do regions outside the hippocampus matter? AJNR Am J Neuroradiol 2017;38:546-552
  8. Brewer JB. Fully-automated volumetric MRI with normative ranges: translation to clinical practice. Behav Neurol 2009;21:21-28
  9. Min J, Moon WJ, Jeon JY, Choi JW, Moon YS, Han SH. Diagnostic efficacy of structural MRI in patients with mild-to-moderate Alzheimer disease: automated volumetric assessment versus visual assessment. AJR Am J Roentgenol 2017;208:617-623
  10. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage 2012;62:782-790
  11. Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage 2000;11:805-821
  12. Fischl B. FreeSurfer. Neuroimage 2012;62:774-781
  13. Ashburner J, Friston KJ. Unified segmentation. Neuroimage 2005;26:839-851
  14. Brewer JB, Magda S, Airriess C, Smith ME. Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am J Neuroradiol 2009;30:578-580
  15. Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED; Alzheimer's Disease Neuroimaging Initiative. Comparison of automated brain volume measures obtained with NeuroQuant and FreeSurfer. J Neuroimaging 2015;25:721-727
  16. Ross DE, Seabaugh J, Cooper L, Seabaugh J. NeuroQuant® and NeuroGage® reveal effects of traumatic brain injury on brain volume. Brain Inj 2018;32:1437-1441
  17. Steenwijk MD, Amiri H, Schoonheim MM, de Sitter A, Barkhof F, Pouwels PJW, et al. Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. Neuroimage Clin 2017;15:843-853
  18. Storelli L, Rocca MA, Pagani E, Van Hecke W, Horsfield MA, De Stefano N, et al. Measurement of whole-brain and gray matter atrophy in multiple sclerosis: assessment with MR imaging. Radiology 2018;288:554-564
  19. Cho Y, Seong JK, Jeong Y, Shin SY; Alzheimer's Disease Neuroimaging Initiative. Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 2012;59:2217-2230
  20. Lee JS, Kim C, Shin JH, Cho H, Shin DS, Kim N, et al. Machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease spectrum: development of the classifier and longitudinal evaluation. Sci Rep 2018;8:4161
  21. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263-269
  22. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999;56:303-308
  23. Guo C, Ferreira D, Fink K, Westman E, Granberg T. Repeatability and reproducibility of FreeSurfer, FSL-SIENAX and SPM brain volumetric measurements and the effect of lesion filling in multiple sclerosis. Eur Radiol 2019;29:1355-1364
  24. Olejnik S, Algina J. Measures of effect size for comparative studies: applications, interpretations, and limitations. Contemp Educ Psychol 2000;25:241-286
  25. Reid MW, Hannemann NP, York GE, Ritter JL, Kini JA, Lewis JD, et al. Comparing two processing pipelines to measure subcortical and cortical volumes in patients with and without mild traumatic brain injury. J Neuroimaging 2017;27:365-371
  26. Ross DE, Ochs AL, Tate DF, Tokac U, Seabaugh J, Abildskov TJ, et al. High correlations between MRI brain volume measurements based on NeuroQuant® and FreeSurfer. Psychiatry Res Neuroimaging 2018;278:69-76
  27. Kim HJ, Park JY, Seo SW, Jung YH, Kim Y, Jang H, et al. Cortical atrophy pattern-based subtyping predicts prognosis of amnestic MCI: an individual-level analysis. Neurobiol Aging 2019;74:38-45
  28. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355
  29. Nestor SM, Gibson E, Gao FQ, Kiss A, Black SE; Alzheimer's Disease Neuroimaging Initiative. A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer's disease. Neuroimage 2013;66:50-70
  30. Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, et al. Different regional patterns of cortical thinning in Alzheimer's disease and frontotemporal dementia. Brain 2007;130:1159-1166
  31. Singh V, Chertkow H, Lerch JP, Evans AC, Dorr AE, Kabani NJ. Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain 2006;129:2885-2893
  32. de Jong LW, van der Hiele K, Veer IM, Houwing JJ, Westendorp RG, Bollen EL, et al. Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study. Brain 2008;131:3277-3285
  33. Li YD, He HJ, Dong HB, Feng XY, Xie GM, Zhang LJ. Discriminative analysis of early-stage Alzheimer's disease and normal aging with automatic segmentation technique in subcortical gray matter structures: a multicenter in vivo MRI volumetric and DTI study. Acta Radiol 2013;54:1191-1200
  34. Moon Y, Han SH, Moon WJ. Patterns of brain iron accumulation in Vascular dementia and Alzheimer's dementia using quantitative susceptibility mapping imaging. J Alzheimers Dis 2016;51:737-745
  35. Hamasaki H, Honda H, Suzuki SO, Shijo M, Ohara T, Hatabe Y, et al. Tauopathy in basal ganglia involvement is exacerbated in a subset of patients with Alzheimer's disease: The Hisayama study. Alzheimers Dement (Amst) 2019;11:415-423
  36. Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012;263:344-361