• Title/Summary/Keyword: MR engineering

검색결과 1,198건 처리시간 0.029초

붕괴하중을 받는 MR 댐퍼의 Bingham 모델을 이용한 저항성능 정해 (Exact Solution for Resistance Capacity utilizing Bingham Model of MR Dampers under Collapse Load)

  • 성지영;민경원;김진구
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.234-240
    • /
    • 2011
  • This study deals with progressive collapse of a structure retrofitted with MR dampers. In order to assess their effect of mitigation which prevents progressive collapse, control force ratio is defined by friction force of MR dampers divided by external force. First, simple model of a structure with MR dampers is suggested. Using the model, exact solution with the control force ratio is obtained. When and where the system is stopped is predicted by the derived solution. Through the dissipated energy by MR dampers during collapse event, equivalent damping ratio is derived. Finally, comparison of exact and equivalent solutions is presented.

가상 동흡진기를 고려한 우등버스용 MR댐퍼의 제어 시뮬레이션 (Control simulation of MR damper for a cruise bus including the virtual dynamic damper)

  • 박성준;손정현
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.19-24
    • /
    • 2011
  • In this study, a control method of MR(magneto-rheological) damper for a cruise bus is investigated. A virtual dynamic damper and a sky-hook algorithm are employed to control the damping characteristics of MR damper. Coefficients for a virtual dynamic damper are determined through the parameter identification. A quarter car model of a cruise bus is established by using ADAMS/Car program for the computer simulation. Sine wave excitation and random excitation are used to compare the controlled MR damper with the passive damper. From the simulation results, the performance of MR damper with a virtual dynamic damper is better than that of the passive damper.

MR 댐퍼를 적용한 철도차량의 안정성 해석 (Stability Analysis of Railway Vehicle Featuring MR Damper)

  • 하성훈;최승복;유원희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.957-962
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological (MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect. Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

  • PDF

힘 반영 장치용 소행 MR 브레이크 (A Small MR Brake for Force Feedback Devices)

  • 김승종;조창현;이종민;황요하;김문상
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.169-172
    • /
    • 2004
  • This paper proposes a new MR(magneto-rheological) brake utilizing composite modes of MR fluid. Its basic structure and design scheme are almost the same with the conventional MR brake, but for slots in a rotating disk or shell. The slots enable the proposed MR brake to use a new mode, so-called, ‘direct cutting chain mode’as well as shear mode, which results in increasing the braking force(almost 150% compared to the case without slots). Some experimental results show that the proposed MR brake provide the sufficient braking force to be adopted for small portable force feedback devices.

  • PDF

MR 유체를 이용한 엔진마운트의 진동제어 (Vibration Control of an Engine Mount Featuring MR Fluid)

  • 이현희;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.213-218
    • /
    • 2001
  • A magnetorheological(MR) engine mount for a passenger vehicle and its vibration control performance is experimentally evaluated. A mixed-mode model for the MR engine is derived by incorporating Herschel-Bulkely model of the MR fluid. After analyzing the field-dependent damping force, a appropriate size of the MR engine mount is manufactured. The field-dependent is displacement transmissibility of the engine mount is evaluated in the frequency domain at various excitation levels. In addition, time-dependant damping force is experimentally investigated by changing the excitation amplitude.

  • PDF

MR댐퍼를 적용한 철도차량의 안정성 해석 (Stability Analysis of Railway Vehicle Featuring MR Damper)

  • 하성훈;최승복;유원희
    • 한국소음진동공학회논문집
    • /
    • 제18권7호
    • /
    • pp.732-740
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological(MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

우등버스용 MR 댐퍼의 실험적 모델링 (Experimental Modeling of MR Damper for Cruise Bus)

  • 손정현;전철웅
    • 대한기계학회논문집A
    • /
    • 제35권8호
    • /
    • pp.863-867
    • /
    • 2011
  • 본 논문에서는 우등버스용 MR 댐퍼의 특성 시험 결과를 분석하고, 비선형 히스테리시스 특성을 모델링할 수 있는 실험적 모델링이 제시된다. MR 댐퍼의 인가전류에 따른 실험적 모델을 구성하고, 매트랩의 최적설계 툴 박스를 이용하여 계수를 규명한다. 우등버스의 전차량 시뮬레이션을 통하여 차량동역학 해석용 MR 댐퍼의 실험적 모델의 유용성을 검증한다.

MR유체를 이용한 스퀴즈필름 댐퍼의 응답특성 (Performance of Squeeze Film Damper Using Magneto-Rheological Fluid)

  • 안영공;양보석;신동춘;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.67-70
    • /
    • 2002
  • This paper presents the property of the Squeeze Film Damper (SFD) using Magneto-Rheological fluid (MR fluid). The damping property of a SFD for a flexible rotor system varied according to vibration mode. MR fluid is known as a functional fluid with controllable apparent viscosity of the fluid by applied magnetic field strength. When the MR fluid is applied in the SFD, the SFD using MR fluid can effectively reduce vibrations of the flexible rotor in a wide range of rotating speed by control of the applied magnetic field strength. To investigate in detail the SFD using MR fluid, the SFD to support one mass was constructed and its performance was experimentally investigated in the present study. The damping property of the SFD using MR fluid has viscous damping by Newtonian fluid, but not Coulomb friction by Bingham fluid. Therefore, The system damped by the SFD can be considered as a linear system.

  • PDF

MR 댐퍼를 이용한 구급차의 환자용 Bed Stage 설계 및 제어 (Design and Control of Bed Stage for Patient Compartment of Ambulance Using MR Damper)

  • 최승복;채희동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.26-27
    • /
    • 2014
  • This paper proposes a new bed stage system for vibration attenuation in patient compartment of ambulance. The bed stage which consist of four MR dampers can isolate vibration in the vertical, rolling and pitching directions. After evaluating dynamic characteristics of MR damper, 1/4 bed stage model is formulated. The sky hook controller is then utilized for vibration control. Finally, control responses of the bed stage equipped with MR dampers are presented.

  • PDF

MR유체를 이용한 스퀴즈모드형 마운트의 동특성 (Dynamic Properties of Squeeze Type Mount Using MR Fluid)

  • 하종용;안영공;양보석;정석권;김동조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF