• Title/Summary/Keyword: MR engineering

Search Result 1,198, Processing Time 0.038 seconds

Equivalent damping ratio based on earthquake characteristics of a SDOF structure with an MR damper (지진특성에 따른 MR 감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.459-464
    • /
    • 2007
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount (통합제진마운트용 MR 댐퍼의 실험적 성능 평가)

  • Seong, Min-Sang;Choi, Seung-Bok;Kim, Cheol-Ho;Lee, Hong-Ki;Baek, Jae-Ho;Han, Hyun-Hee;Woo, Je-Kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

Equivalent damping ratio based on the earthquake response of a SDOF structure with a MR damper (MR 감쇠기가 설치된 단자유도 구조물의 지진응답에 기초한 등가감쇠비)

  • Park, Ji-Hun;Moon, Byoung-Wook;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.879-885
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally, response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

  • PDF

Equivalent Damping Ratio Based on Earthquake Characteristics of a SDOF Structure with an MR Damper (지진특성에 따른 MR감쇠기가 설치된 단자유도 구조물의 등가감쇠비)

  • Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.87-93
    • /
    • 2008
  • Seismic control performance of MR dampers, which have severe nonlinearity, varies with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with the MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with the MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed. Finally. response reduction factors for equivalent linear systems are proposed in order to improve accuracy in the prediction of the actual nonlinear response.

Liquid Phase Adsorption Equilibria of Amines onto High Silica Zeolite, Macroreticular Resin and Granular Activated Carbon (고시리카제올라이트, 거대망상수지 및 입상활성탄에 의한 아민류의 액상흡착평형)

  • Lee, Sung-Sik;Kim, Hyung-Jun;Yu, Myung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.661-666
    • /
    • 1998
  • Liquid phase adsorption equilibria of amines in an aqueous solution onto high silica zeolite pellets (HSZ), macroreticular resin particles (MR) and granular activated carbon (GAC) were determined using a batch bottle technique at 298K. The isotherm curves of HSZ-amines and GAC-amines indicate the nonlinear relationship of unfavorable adsorption type of HSZ-amines and favourable one of GAC-amines. However the curves of MR-amines represent the linear pattern of an adsorption isotherm. Among various equilibrium isotherms, the three parameters of the Redlich-Peterson equation and the two parameters of the Freundlich equation are found to be the most satisfactory within the range of this study. The two parameters of the Langmuir isotherm were not applicable to the present adsorption systems. The amines were adsorbed on the HSZ, MR and GAC in the following sequence of adsorptivity; aromatic amines > primary amines > secondary amines. The product of the Freundlich constants, k and n, proportionally increased with the boiling point, molar volume and dissociation constants of amines adsorbed on HSZ, MR and GAC.

  • PDF

Automated Prostate Cancer Detection on Multi-parametric MR imaging via Texture Analysis (다중 파라메터 MR 영상에서 텍스처 분석을 통한 자동 전립선암 검출)

  • Kim, YoungGi;Jung, Julip;Hong, Helen;Hwang, Sung Il
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.736-746
    • /
    • 2016
  • In this paper, we propose an automatic prostate cancer detection method using position, signal intensity and texture feature based on SVM in multi-parametric MR images. First, to align the prostate on DWI and ADC map to T2wMR, the transformation parameters of DWI are estimated by normalized mutual information-based rigid registration. Then, to normalize the signal intensity range among inter-patient images, histogram stretching is performed. Second, to detect prostate cancer areas in T2wMR, SVM classification with position, signal intensity and texture features was performed on T2wMR, DWI and ADC map. Our feature classification using multi-parametric MR imaging can improve the prostate cancer detection rate on T2wMR.

Automatic fusion of T2-weighted image and diffusion weighted image in pelvis MRI (골반 T2강조 MR 영상과 확산강조 MR 영상 간 자동 융합)

  • Kang, Hye-Won;Jung, Ju-Lip;Hong, Helen;Hwang, Sung-Il
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.359-361
    • /
    • 2012
  • 본 논문은 T2강조 MR 영상과 확산강조 MR 영상의 강체 정합을 통해 크기, 위치, 회전 변환 왜곡을 보정하여 자궁내막암의 위치를 자동으로 찾는 방법을 제안한다. 영상해상도와 밝기값 분포가 서로 다른 두 영상간 정합의 정확성을 향상시키기 위해 잡음을 제거하고 두 영상의 밝기값 신호 분포의 유사성을 강화시킨다. 유사성이 향상된 두 영상의 크기, 위치, 회전 변환 왜곡을 보정하기 위해 정규화 상호정보를 최대화 하는 강체 정합을 반복적으로 수행한다. 정합된 영상에서 악성 종양을 쉽게 판별 할 수 있도록 현상확상계수지도를 컬러맵으로 생성하여 T2강조 MR 영상에서 얻은 종양의 후보군에 매핑하여 T2강조 MR 영상과 융합한다. 실험을 위하여 최적화 반복 과정에 따른 정규화 상호정보 수치 수렴 과정을 확인하고, 융합 후 종양 영역이 매핑되는 것을 육안평가를 통해 분석하였다. 제안방법을 통하여 T2강조 MR 영상과 확산강조 MR 영상을 융합함으로써 종양의 위치를 자동으로 파악하고 자궁내막암의 병기를 확정하는 용도로 활용할 수 있다.

Reliability assessment of semi-active control of structures with MR damper

  • Hadidi, Ali;Azar, Bahman Farahmand;Shirgir, Sina
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.131-141
    • /
    • 2019
  • Structural control systems have uncertainties in their structural parameters and control devices which by using reliability analysis, uncertainty can be modeled. In this paper, reliability of controlled structures equipped with semi-active Magneto-Rheological (MR) dampers is investigated. For this purpose, at first, the effect of the structural parameters and damper parameters on the reliability of the seismic responses are evaluated. Then, the reliability of MR damper force is considered for expected levels of performance. For sensitivity analysis of the parameters exist in Bouc- Wen model for predicting the damper force, the importance vector is utilized. The improved first-order reliability method (FORM), is used to reliability analysis. As a case study, an 11-story shear building equipped with 3 MR dampers is selected and numerically obtained experimental data of a 1000 kN MR damper is assumed to study the reliability of the MR damper performance for expected levels. The results show that the standard deviation of random variables affects structural reliability as an uncertainty factor. Thus, the effect of uncertainty existed in the structural model parameters on the reliability of the structure is more than the uncertainty in the damper parameters. Also, the reliability analysis of the MR damper performance show that to achieve the highest levels of nominal capacity of the damper, the probability of failure is greatly increased. Furthermore, by using sensitivity analysis, the Bouc-Wen model parameters which have great importance in predicting damper force can be identified.

Characterization and modeling of a self-sensing MR damper under harmonic loading

  • Chen, Z.H.;Ni, Y.Q.;Or, S.W.
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1103-1120
    • /
    • 2015
  • A self-sensing magnetorheological (MR) damper with embedded piezoelectric force sensor has recently been devised to facilitate real-time close-looped control of structural vibration in a simple and reliable manner. The development and characterization of the self-sensing MR damper are presented based on experimental work, which demonstrates its reliable force sensing and controllable damping capabilities. With the use of experimental data acquired under harmonic loading, a nonparametric dynamic model is formulated to portray the nonlinear behaviors of the self-sensing MR damper based on NARX modeling and neural network techniques. The Bayesian regularization is adopted in the network training procedure to eschew overfitting problem and enhance generalization. Verification results indicate that the developed NARX network model accurately describes the forward dynamics of the self-sensing MR damper and has superior prediction performance and generalization capability over a Bouc-Wen parametric model.