• Title/Summary/Keyword: MR cylinder

Search Result 23, Processing Time 0.032 seconds

A study on the force control of MR cylinder with built-in valves (밸브 내장형 MR 실린더를 이용한 힘 제어에 관한 연구)

  • Song J.Y.;Ahn K.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1018-1023
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated for fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}30mm{\times}300mm\;and\;{\varphi}28.5mm{\times}120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa and contact force of 320N were obtained with the input current of 1.5A. The rising time of force was 1.1s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the force control.

  • PDF

A Study on the MR Cylinder with Built-in alves (밸브 내장형 MR 실린더에 관한 연구)

  • Song Joo-Young;Ahn Kyoung-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.130-136
    • /
    • 2005
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is suggested and fabricated fur fluid control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has $\varphi30mm\times300mm$ and $\varphi28.5mm\times120mm$ in face size, respectively and 0.8mm in gap length. Through experiments, it was found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. The differential pressure of 0.47MPa was obtained with the input current of 1.5A. The rising time was 2.3s in step response of a manipulator using the MR cylinder. The effectiveness of the MR cylinder was also demonstrated through the position control.

A study on the force control of a servo actuator with built-in MR Valve (MR 밸브 내장형 서보 액추에이터의 힘 제어에 관한 연구)

  • Ahn K.K.;Song J.Y.;Kim J.S.;Ahn Y.K.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A servo actuator with a valve using MR (Magneto-Rheological) fluid is proposed for fluid control systems. The MR fluid is well known as a functional fluid whose apparent viscosity is controlled by the applied magnetic field strength. The pressure in the MR cylinder can be controlled by the applied magnetic field strength. Good points of the MR cylinder are more simple, compact and reliable structure than a conventional oil hydraulic cylinder. The experimental results show that the MR cylinder could be used as a servo actuator.

  • PDF

A study on the novel linear actuator using MR fluid

  • Song, Joo-Young;Ahn, Kyoung-Kwan;Ahn, Young-Kong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.296-300
    • /
    • 2004
  • A new MR cylinder with built-in valves using MR fluid (MR valve) is proposed for fluid power control systems. The MR or Magneto-Rheololgical fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. The MR cylinder is composed of cylinder with small clearance and piston with electromagnet. The differential pressure is controlled by the applied magnetic field intensity. It has the characteristics of simple, compact and reliable structure. The size of MR cylinder and piston has ${\varphi}$60mm${\times}$259mm and ${\varphi}$58mm${\times}$136.5mm in face size respectively and 0.8mm in gap length. Through experiments on the static characteristics, it is found that the differential pressure is controlled by the applied magnetic field intensity under little influence of the flow rate, which corresponds to a pressure control valve. Effectiveness of the MR cylinder is demonstrated through the position control of one link MR manipulator.

  • PDF

Propose, Design and Control of a New Actuator Using MR Fluid (MR 유체를 이용한 새로운 액추에이터의 제안, 설계 및 제어)

  • Kim J.S.;Ahn K.K.;Kha N.B.;Ahn Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.111-112
    • /
    • 2006
  • A new MR cylinder with built-in valves using Magneto - Rheological fluid (MR valve) is proposed for fluid power control systems. The MR fluid is a newly developed functional fluid whose obvious viscosity is controlled by the applied magnetic field intensity. This MR cylinder, which is composed of cylinder with small clearance and piston with electromagnet, has the characteristics of simple, compact and reliable structure. This paper presents a method to control the pressure of MR cylinder by using Generalized Predictive Control (GPC) algorithm. The differential pressure is controlled by applying magnetic field intensity to MR fluid. The use of GPC controller is to generate a control sequence by minimizing a cost function in such a way that the future system output is driven close to reference over finite prediction horizons. Experimental results from real time control using GPC method compared with conventional PID control method are also shown in this paper.

  • PDF

PWM Control of On-Off Valves using MR Fluid Spool (MR유체 스풀을 이용한 온-오프 밸브의 PWM제어)

  • 양택주;배형섭;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1709-1712
    • /
    • 2003
  • Almost the on-off type solenoid valve is used to hydraulic system. It has a strong point that concerned about rapid response, electric and hydraulic characteristic at the same time. In this paper we produced the new type spool using the MR fluid different from the others. Also we controlled a cylinder position through PWM method. And using the AMESim software, We compared our new type spool valve with existed one from data of simulation and experiment.

  • PDF

Modeling and Vibration Control of Small-sized Magneto-rheological Damper (소형 MR 댐퍼의 모델링 및 진동제어)

  • Lee, Jong-Woo;Seong, Min-Sang;Woo, Je-Kwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.344-349
    • /
    • 2012
  • This paper presents a new small-sized damper featuring magneto-rheological (MR) fluid which can be applied to vibration control system. The proposed MR damper consists of cylinder, piston, a couple of bearings, oil-seals and magnetic circuit which has two coils. In this damper, approximately 5cc of MR fluid is used. The damping force of the MR damper is designed to be followed by linear shear-mode Bingham-plastic model. In order to verify the performance of the MR damper, an experimental apparatus is established. In the experimental test, the damping force of the MR damper is measured with respect to time, displacement and velocity. In addition, the time response of MR damper is measured when 1A of step current is applied. Finally, The proposed small MR damper is applied to vibration control. In this process, a simple 1-DOF system is modeled and controlled using PID controller.

  • PDF

Modeling and Vibration Control of Small-sized Magneto-rheological Damper (소형 MR 댐퍼의 모델링 및 진동제어)

  • Lee, Jong-Woo;Seong, Min-Sang;Woo, Je-Kwan;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1121-1127
    • /
    • 2012
  • This paper presents a new small-sized damper featuring magneto-rheological(MR) fluid which can be applied to vibration control system. The proposed MR damper consists of cylinder, piston, a couple of bearings, oil-seals and magnetic circuit which has two coils. In this damper, approximately 5cc of MR fluid is used. The damping force of the MR damper is designed to be followed by linear shear-mode Bingham-plastic model. In order to verify the performance of the MR damper, an experimental apparatus is established. In the experimental test, the damping force of the MR damper is measured with respect to time, displacement and velocity. In addition, the time response of MR damper is measured when 1A of step current is applied. Finally, the proposed small MR damper is applied to vibration control. In this process, a simple 1-DOF system is modeled and controlled using PID controller.

Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS (MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어)

  • Lee, Dong-Young;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF