• Title/Summary/Keyword: MR Damper

Search Result 379, Processing Time 0.031 seconds

Vibration Control Performance Evaluation of Smart TMD for a Tilted Diagrid Tall Building (경사진 다이어그리드 비정형 초고층 건물에 대한 스마트 TMD의 제진성능평가)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.79-88
    • /
    • 2011
  • Recently, complex-shaped tall buildings represented by 3T(Twisted, Tapered, Tilted) are planed largely. A diagrid structural system is one of the most widely used structural system for complex-shaped tall buildings because of its structural efficiency and formativeness. Plans for tilted tall buildings are largely presented because of beauty of a sculpture and many of buildings use diagrid structural systems. Lateral displacements of tilted tall buildings are induced by not only lateral loads but also self weight. Therefore, reduction of lateral responses of tilted tall buildings is as important as typical tall buildings. In this study, a smart TMD is introduced to reduce seismic responses of tilted diagrid tall buildings and its control performance is evaluated. MR damper is employed for the smart TMD and ground-hook controller is used as a control algorithm for the smart TMD. 100-story tall building is used as an example structure. Control performances of uncontrolled case, controlled case with TMD and controlled case with smart TMD are compared and investigated. Numerical simulation has shown that smart TMD presented good control performance for displacement response but acceleration response was not controlled well.

Multi-objective Integrated Optimization of Diagrid Structure-smart Control Device (다이어그리드 구조물-스마트 제어장치의 다목적 통합 최적화)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.69-77
    • /
    • 2013
  • When structural design of a tall building is conducted, reduction of wind-induced lateral displacement is one of the most important problem. For this purpose, additional dampers and vibration control devices are generally considered. In this process, control performance of additional devices are usually investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a tall building with additional smart damping device has been investigated. To this end, a 60-story diagrid building structure is used as an example structure and artificial wind loads are used for evaluation of wind-induced responses. An MR damper is added to the conventional TMD to develop a smart TMD. Because dynamic responses and the amount of structural material and additional smart damping devices are required to be reduced, a multi-objective genetic algorithm is employed in this study. After numerical simulation, various optimal designs that can satisfy control performance requirement can be obtained by appropriately reducing the amount of structural material and additional smart damping device.

Performance Estimation of Semi-active Real-time Feedback Vibration Control System (준능동형 실시간 Feedback 진동제어시스템의 성능평가)

  • Heo, Gwang Hee;Jeon, Joon Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2011
  • This paper is concerned to constitute a semi-active realtime feedback vibration control system and evaluate it through experiments in order to control in realtime the vibration externally generated, specially on the bridges which is structurally flexible. For the experiment of vibration control, we built a model bridge structure of Seohae Grand Bridge in a 1/200 reduced form and inflicted El-centro wave on the model structure also in a reduced force considering the lab condition. The externally excited vibration was to be controled by placing a shear type MR damper vertically on the center of bridge span, and the response (displacement and acceleration) of structure was to be acquired by placing LVDT and Accelerometer at the same time. As for the experiment concerning controlling vibration, a realtime feedback vibration control experiments were performed under each different condition largely such as un-control, passive on/off control, Lyapunov stability theory control, and Clipped-optimal control. Its control performance under different condition was quantitatively evaluated in terms of the peak absolute displacements, the peak absolute accelerations and the power required for control on the center of span. The results of experiments proved that the Lyapunov control and clipped-iptimal control were effective to decrease the displacement and acceleration of the structure, and also to decrease the power consumption to a great extent. Finally, the semi-active realtime feedback vibration control system constituted in this research was proven to be an effective way to control and manage the vibration generated on bridge structure.

Experimental Evaluation of Seismic Response Control Performance of Smart TMD (스마트 TMD의 지진응답 제어성능 실험적 검토)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.49-56
    • /
    • 2022
  • Tuned mass damper (TMD) is widely used to reduce dynamic responses of structures subjected to earthquake loads. A smart tuned mass damper (STMD) was proposed to increase control performance of a traditional passive TMD. A lot of research was conducted to investigate the control performance of a STMD based on analytical method. Experimental study of evaluation of control performance of a STMD was not widely conducted to date. Therefore, seismic response reduction capacity of a STMD was experimentally investigated in this study. For this purpose, a STMD was manufactured using an MR (magnetorheological) damper. A simple structure presenting dynamic characteristics of spacial roof structure was made as a test structure. A STMD was made to control vertical responses of the test structure. Two artificial ground motions and a resonance harmonic load were selected as experimental seismic excitations. Shaking table test was conducted to evaluate control performance of a STMD. Control algorithms are one of main factors affect control performance of a STMD. In this study, a groundhook algorithm that is a traditional semi-active control algorithm was selected. And fuzzy logic controller (FLC) was used to control a STMD. The FLC was optimized by multi-objective genetic algorithm. The experimental results presented that the TMD can effectively reduce seismic responses of the example structures subjected to various excitations. It was also experimentally shown that the STMD can more effectively reduce seismic responses of the example structures conpared to the passive TMD.

Simultaneous Optimization of Hybrid Mid-Story Isolation System and Building Structure (하이브리드 중간층 지진 격리 시스템과 빌딩 구조물의 동시 최적화)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.51-59
    • /
    • 2019
  • A hybrid mid-story seismic isolation system with a smart damper has been proposed to mitigate seismic responses of tall buildings. Based on previous research, a hybrid mid-story seismic isolation system can provide effective control performance for reduction of seismic responses of tall buildings. Structural design of the hybrid mid-story seismic isolation system is generally performed after completion of structural design of a building structure. This design concept is called as an iterative design which is a general design process for structures and control devices. In the iterative design process, optimal design solution for the structure and control system is changed at each design stage. To solve this problem, the integrated optimal design method for the hybrid mid-story seismic isolation system and building structure was proposed in this study. An existing building with mid-story isolation system, i.e. Shiodome Sumitomo Building, was selected as an example structure for more realistic study. The hybrid mid-story isolation system in this study was composed of MR (magnetorheological) dampers. The stiffnessess and damping coefficients of the example building, maximum capacity of MR damper, and stiffness of isolation bearing were simultaneously optimized. Multi-objective genetic optimization method was employed for the simultaneous optimization of the example structure and the mid-story seismic isolation system. The optimization results show that the simultaneous optimization method can provide better control performance than the passive mid-story isolation system with reduction of structural materials.

Analysis on the Effects of the Lower Extremities Muscle Activation during Muscular Strength Training on an Unstable Platform with Magneto-Rheological Dampers (MR 댐퍼를 적용한 불안정판에서 하지 근력 훈련이 근 활성도에 미치는 영향 분석)

  • Choi, Y.J.;Piao, Y.J.;Kwon, T.K.;Kim, D.W.;Kim, J.J.;Kim, N.G.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.636-646
    • /
    • 2007
  • Adequate postural control depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function is essential to maintain the postural control. The experimental studies was performed on the muscular activities in the lower extremities during maintaining and moving exercises on an unstable platform with Magneto Rheological(MR) dampers. The unstable platform of the developed system was controlled by electric currents to the MR dampers. A subject executed the maintaining and moving exercises which are presented through the display monitor. The electromyographies of the eight muscles in lower extremities were recorded and analyzed in the time and the frequency domain: the muscles of interest were rectus femoris(RF), biceps femoris(BF), tensor fasciae latae(TFL), vastus lateralis(VL), vastus medialis(VM), gastrocnemius(Ga), tibialis anterior(TA), Soleus(So). The experimental results showed that the muscular activities differed in the four moving exercises and the nine maintaining exercises. For the anterior-posterior pattern, the TA showed highest activities; for the left-right pattern, the TFL; for the 45, $-45^{\circ}$ pattern, the TFL and TA. Also, the rate of the increase in the muscular activities were affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggest that the choice of different maintaining and moving exercises could selectively train different muscles in various intensity. Futhermore, the findings suggested that the training using this system can improve the ability of postural control.

Control of Smart Base-isolated Benchmark Building using Fuzzy Supervisory Control (퍼지관리제어기법을 이용한 스마트 면진 벤치마크 건물의 제어)

  • Kim, Hyun-Su;Roschke P. N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.55-66
    • /
    • 2005
  • The effectiveness of fuzzy supervisory control technique for the control of seismic responses of smart base isolation system is investigated in this study. To this end, first generation base isolated building benchmark problem is employed for the numerical simulation. The benchmark structure under consideration is an eight-story base isolated building having irregular plan and is equipped with low-damping elastometric bearings and magnetorheological (MR) dampers for seismic protection. Lower level fuzzy logic controllers (FLC) for far-fault or near-fault earthquakes are developed in order to effectively control base isolated building using multi-objective genetic algorithm. Four objectives, i.e. reduction of peak structural acceleration, peak base drift, RMS structural acceleration and RMS base drift, are used in multi-objective optimization process. When earthquakes are applied to benchmark building, each of low level FLCs provides different command voltage and supervisory fuzzy controller combines two command voltages io one based on fuzzy inference system in real time. Results from the numerical simulations demonstrate that base drift as well as superstructure responses can be effectively reduced using the proposed supervisory fuzzy control technique.

Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping

  • Bahar, Arash;Salavati-Khoshghalb, Mohsen;Ejabati, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.359-371
    • /
    • 2018
  • Strong seismic events commonly cause large drift and deformation, and functionality failures in the superstructures. One way to prevent functionality failures is to design structures which are ductile and flexible through yielding when subjected to strong ground excitations. By developing forces that assist motion as "negative stiffness forces", yielding can be achieved. In this paper, we adopt the weakening and damping method to achieve a new approach to reduce all of the structural responses by further adjusting damping phase. A semi-active control system is adopted to perform the experiments. In this adaptation, negative stiffness forces through certain devices are used in weakening phase to reduce structural strength. Magneto-rheological (MR) dampers are then added to preserve stability of the structure. To adjust the voltage in MR dampers, an inverse model is employed in the control system to command MR dampers and generate the desired control forces, where a velocity control algorithm produces initial required control force. An extensive numerical study is conducted to evaluate proposed methodology by using the smart base-isolated benchmark building. Totally, nine control systems are examined to study proposed strategy. Based on the numerical results of seven earthquakes, the use of proposed strategy not only reduces base displacements, base accelerations and base shear but also leads to reduction of accelerations and inter story drifts of the superstructure. Numerical results shows that the usage of inverse model produces the desired regulated damping, thus improving the stability of the structure.

Performance Evaluation of Vibration Control of a Smart Top-Story Isolation System (스마트 최상층 면진시스템의 진동제어 성능평가)

  • Kang, Joo-Won;Kim, Tae-Ho;Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • In this study, the control performance of a smart top-story isolation system for tall buildings subjected to wind excitation was investigated. To this end, a 77-story tall building structure was employed and wind loads obtained from wind tunnel test were used for numerical simulations. The top-story of an example structure is separated from the main structure by a smart base isolation system composed of friction pendulum systems (FPS) and MR dampers. The primary purpose of the smart top-story isolation system is to mitigate the dynamic responses of the main structure, but the excessive movement of the isolated top story may cause the unstableness of the building structure. Therefore, the skyhook control algorithm was used to effectively reduce both responses of the isolated top story and the main structure. The control performance of the proposed smart top-story isolation system was investigated in comparison with that of the passive top-story isolation system. It has been shown from numerical simulation results that the smart top-story isolation system can effectively reduce wind-induced responses of the example building structure compared to the passive top-story isolation system with reduction of the top-story movement.

  • PDF