• Title/Summary/Keyword: MPa

Search Result 5,926, Processing Time 0.033 seconds

Compressive behavior of thick carbon fiber/epoxy composites in a submarine environment (두께가 두꺼운 카본화이버/에폭시 적층복합재의 해저환경에서의 압축특성)

  • LEE JI-HOON;RHEE KYONG-YOP;KIM HYEON-JU;JUNG DONG-HO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.225-227
    • /
    • 2004
  • The compressive characteristics of thick carbon/epoxy composite in a submarine environment was investigated in this study. The specimens made of thick carbon fiber/epoxy composite that were immersed into seawater Jar thirteen months. the seawater content at saturation was about $1.2\%$ of the specimen weight. Compressive tests have been performed in different hydrostatic pressures of 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. The results showed that the compressive elastic modulus increased about $12.3\%$ as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The results also showed that compressive fracture strength increased $28\%$ and compressive fracture strain increased $8.5\%$ as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.

  • PDF

Properties of Sandwich Panel Using Cellular Concrete (기포콘크리트를 사용한 샌드위치 패널의 특성)

  • Jung, Yong-Wook;Jang, Seck-Soo;Lee, Seung-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.845-848
    • /
    • 2006
  • This study sought to investigate the characteristics of cellular concrete, such as porosity, strength and density, according to the cell addition rate. Based on the result, it examined the application to a cellular concrete panel. Porosity was found to increase according to the cell addition rate, measuring continuous porosity of 42% and 47%, and total porosity of 61% and 66%. In terms of cell addition rate, measurements were 7% and 11% respectively. Compressive strength represented 5.0MPa, 3.8MPa and 2.8 MPa in terms of 7%, 9% and 11% respectively, decreasing 1 MPa of strength according to every 2% increase of cell addition rate. Density showed 0.55, 0.44 and 0.36 in terms of 7%, 9% and 11% respectively, decreasing 1.0 MPa according to every 2% increase of cell addition rate proportionally. In addition the sandwich panel of cellular concrete which was fabricated during this research was found to be relatively heavy and non-flammable with an excellent strength of 4.0 MPa. Compared with a light concrete panel, considering the compressive strength that accountsfor 10 MPa, it appeared relatively low in strength. However it would be excellent for application due to the light density of only 0.4 MPa.

  • PDF

Experimental and Numerical Analysis of DME Spray Characteristics in Common-rail Fuel System (커먼레일 연료시스템에서의 DME 분무 특성에 대한 실험과 해석적 연구)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Lee, Sang-In;Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1151-1159
    • /
    • 2012
  • Spray visualization and computer simulation of a DME injector have been conducted to investigate the enlarged injection hole diameter effect. To increase the reliability of the computational result, simulation results have been compared with the visualization test results, and the behaviors of a DME spray under various high-pressure and -temperature conditions have been computed. This study shows a discrepancy of 3.57% between the experimental and the computational results of penetration length for an injection pressure of 35 MPa and ambient pressure of 5 MPa. When simulating the engine conditions, the maximum penetration length of a fully developed DME spray is 42 mm when the temperature to pressure ratio is 300 K/MPa. The DME spray behavior is dominantly affected by the ambient pressure under the condition that the ratio is less than 300 K/MPa, and by the ambient temperature under the condition that the ratio is more than 300 K/MPa.

IN VITRO MICRO-SHEAR BOND STRENGTH OF FIVE COMPOSITE RESINS TO DENTIN WITH FIVE DIFFERENT DENTIN ADHESIVES (미세-전단 결합 강도 시험을 이용한 상아질 접착제와 수복용 복합 레진의 호환성에 관한 연구)

  • Chung, Jin-Ho;Roh, Byoung-Duck
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.353-364
    • /
    • 2004
  • The purpose of this study was to compare and to evaluate the combination use of 5 kinds of dentin adhesive systems and 5 kinds of composite resins using micro-shear bond test. Five adhesive systems (Prime & Bond NT (PBN). Onecoat bond (OC), Excite (EX), Syntac (SY), Clearfil SE bond (CS)) and five composite resins (Spectrum (SP), Synergy Compact (SC), Tetric Ceram (TC), Clearfil AP-X (CA), Z100 (Z1)) were used for this study ($5{\;}{\times}{\;}5{\;}={\;}25group$, n =14/group). The slices of horizontally sectioned human tooth were bonded with each bonding system and each composite resin, and tested by a micro-shear bond strength test. These results were analyzed statistically. The mean micro-shear bond strength of dentin adhesive systems were in order of CS (22.642 MPa), SY (18.368 MPa), EX (14.599 MPa). OC (13.702 MPa). PBN (12.762 MPa). The mean bond strength of self-etching primer system group (CS, SY) in dentin was higher than that of self-priming adhesive system groups (PBN, EX, OC) significantly (P<0.05). The mean bond strength of composite resins was in order of SP (19.008 MPa), CA (17.532 MPa). SC (15.787 MPa), TC (15.068 MPa). Z1 (14.678 MPa). Micro-shear bond strength of SP was stronger than those of other composite resins significantly (P < 0.05). And those of TC and Z1 were weaker than other composite resins significantly (P < 0.05). No difference was found in micro-shear bond strength of composite resin in self-etching primer adhesive system groups (CS, SY) statistically. However, there was significant difference of micro-shear bond strength of composite resin groups in self-priming adhesive systems group (PBN, EX, OC). The combination of composite resin and dentin adhesive system recommended by manufacturer did not represent positive correlation. It didn't seem to be a significant factor.

An Experimental Study for Bond Stress between DFRCC and Carbon FRP Plank Used as a Permanent Formwork (영구거푸집으로 활용한 탄소섬유 FRP 판과 DFRCC 사이의 부착응력에 관한 실험적 연구)

  • Park, Chan-Young;Yoo, Seung-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1687-1694
    • /
    • 2014
  • Recently FRP of carbon fibers is utilized as a repairing and reinforcing material for concrete structures. In this study, the bond performance between CFRP planks and ductile fiber reinforced cementitious composites was evaluated in order to develop a new system of concrete bridge deck to take advantage of the FRP planks of carbon fiber using as a permanent formwork. In order to strengthen the bonding between the FRP and cast-in-place concrete, an epoxy resin circulated in the market generally was fitted with a silica sand. The bond stress of ordinary concrete appeared in 2.11~5.43MPa and the bond stress of ductile fiber reinforced cementitious composites DC1 (RF4000) and DC2 (PP) respectively were 3.91~5.60MPa, 2.92~5.21MPa and the average bond stress of DC3 (RF4000+RSC15) and DC4 (PP+RSC15) were 4.80~5.58MPa, 5.57~5.89MPa.

A Study of 240MPa Ultra High Strength Concrete Properties Using High Flow Cement (하이플로 시멘트를 이용한 240MPa 초고강도 콘크리트 물성에 관한 연구)

  • Kim, Kang-Min;Yoo, Seung-Yeup;Song, Yong-Soon;Koo, Ja-Sul;Kang, Suck-Hwa;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.365-368
    • /
    • 2008
  • This research is related to 240MPa ultra-high strength concrete(UHSC) with extremely loss W/B ratio. For this development, High flow cement is mainly used which has a short reaction rate due to the high blaine and high early strength, which can make greater fluidity in case of very low W/C ratio. It made the best mixture using the mineral admixtures silica fume, slag powder and special admixture. For dispersibility and homogeneity of cement binder, cement of premix type is produced using omni-mixer. Moreover, it ensures the fluidity of ultra-high strength concrete(UHSC). For having a good fire performance, we made an experiment special coarse aggregate. As a result, we got 180MPa in case of water curing, 200MPa in case of steam curing and uniform UHSC of 240MPa in case of a special curing method.

  • PDF

FE Analysis on the Sealing Characteristics of Multi-Contact Packing for Swivel Joint (스위블 연결구용 멀티접촉패킹의 밀봉특성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.51-55
    • /
    • 2014
  • This paper was analyzed for a sealing characteristics of single lip contact type o-ring and multiple lip contact type packing for a swivel joint using the finite element method. According to the FE analysis, a conventional o-ring produces a maximum contact normal stress of 2.5MPa for a supplied LP gas pressure of 1.8MPa, which is related to the sealing performance. But, a sealing performance of newly invented multi-lip packing produces a maximum contact normal stress of 3.01MPa, which is 20.4% higher than that of a conventional o-ring. And an extrusion of a conventional o-ring, which is strongly related to the sealing endurance safety, was occurred at a supplied gas pressure of 1.62MPa. But, a multi-lip packing does not produce up to the gas pressure of 1.8MPa. This means that a new type of multi-lip packing may have excellent sealing characteristics because of no extrusion for high gas pressure. Thus, multi-lip packing with multiple lip contacts may be useful for high sealing and endurance safety compared to that of the conventional o-ring with a single lip contact.

MPA-based IDA Using the Inelastic Displacement ratio, CR and the Collapse Intensity, RC (비탄성변위비와 붕괴강도비를 이용한 MPA기반의 IDA 해석법)

  • Han, Sang-Whan;Seok, Seung-Wook;Lee, Tae-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2010
  • This study develops an approximate procedure for incremental dynamic analysis (IDA) using modal pushover analysis (MPA) with empirical equations of the inelastic displacement ratio ($C_R$) and the collapse strength ratio ($R_C$). By using this procedure, it is not required to conduct linear or nonlinear response history analyses of multi- or single- degree of freedom (MDF) systems. Thus, IDA curves can be effortlessly obtained. For verification of the proposed procedure, the 6-, 9- and 20-story steel moment frames are tested under an ensemble of 44 ground motions. The results show that the MPA-based IDA with empirical equations of $C_R$ and $R_C$ produced accurate IDA curves of the MDF systems. The computing time is almost negligible compared to the exact IDA using repeated nonlinear response history analysis (RHA) of a structure and the original MPA-based IDA using repeated nonlinear RHA of modal SDF systems.

Kinetics and Equilibrium Study on β-glucosidase under High Hydrostatic Pressure (고압에서 β-glucosidase 반응속도론 및 평형에 관한 연구)

  • Han, Jin Young;Lee, Seung Ju
    • Food Engineering Progress
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2011
  • $\beta$-Glucosidase enzyme reaction under high hydrostatic pressure was investigated in terms of physical chemistry. A model substrate (p-nitrophenyl-${\beta}$-D-glucopyranoside(pNPG)) was used, and the pressure effects on the enzymatic hydrolysis (pNPG${\rightarrow}$pNP) at 25 MPa, 50 MPa, 75 MPa, and 100 MPa were analyzed. Two parts of the reaction such as kinetic and equilibrium stages were considered for mathematical modelling, and their physicochemical parameters such as forward and inverse reaction constants, equilibrium constant, volume change by pressure, etc. were mathematically modeled. The product concentration increased with pressure, and the two stages of reaction were observed. Prediction models were derived to numerically compute the product concentrations according to reaction time over kinetic to equilibrium stages under high pressure condition. Conclusively, the $\beta$-Glucosidase enzyme reaction could be activated by pressurization within 100 MPa, and the developed models were very successful in their prediction.

A Study on the Estimation of Relative Compaction on the Subgrade using a Portable FWD (소형 FWD를 이용한 노상토의 다짐도 추정에 관한 연구)

  • Kang, Hee-Bog;Kim, Kyo-Jun;Kang, Jin-Tae;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.213-219
    • /
    • 2007
  • This study was intended to estimate of relative compaction on the ground under the load using of portable FWD. The outcome in the wake of the study is highlighted as below. Viewing the variation of dynamic deflection modulus depending on a number of compaction, when a number of compaction increased to 8 (18.3MPa) from 4 (15Mpa), a dynamic deflection modulus increased 27%, and when a number reached to 12 (27.9MPa), it doubled the value indicated in 4. Viewing the relationship between dry density and dynamic deflection modulus in line with the increase in a number of compaction, a number of compaction by the roller reaching to the degree of compaction equivalent to 95% of max dry density was 13, with a dynamic deflection modulus indicating 27MPa ~ 29MPa.