• Title/Summary/Keyword: MPPT efficiency

Search Result 182, Processing Time 0.027 seconds

Analysis and study for MPPT algorithms in transformerless PV PCS (변압기 없는 태양광 PCS에서의 최대전력추종제어기법 분석)

  • Lee Kyung-Soo;Jung Young-Seck;So Jung-Hoon;Yu Gwon-Jong;Choi Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.606-609
    • /
    • 2004
  • Maximum power point tracking(MPPT) is usually used for a solar power system. Many maximum power tracking techniques have been considered in the past. The microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different solar arrays. In this paper, four MPPT algorithms are analyzed and studied. Perturbation and Observation(P&O), Incremental Conductance(IncCond), which are used from the past. Improved P&O and Two-mode , which are developed P&O and IncCond algorithms. Also, the author introduces grid-connected fransformerless PV PCS to apply MPPT control. MPPT efficiency is measured by changing irradiance from $0.1kW/m^2\;to\;1kW/m^2$ and simulation was performed for each MPPT algorithm.

  • PDF

Comparison and analysis of the MPPT algorithms in transformerless grid-connected PV PCS (변압기 없는 계통연계형 PV PCS에서의 MPPT 제어기법 비교 분석)

  • Lee Kyungsoo;Jung Youngseck;So Junghoon;Yu Gwonjong;Choi Jaeho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1471-1473
    • /
    • 2004
  • Maximum power point tracking(MPPT) is used in photovoltaic(PV) systems to maximize the photovoltaic array output power, irrespective of the temperature and irradiation conditions. The object of this paper is to compare and analyze MPPT efficiency for different MPPT techniques by changing irradiance. Also, this paper introduces transformerless grid-connected inverter. Simple flow charts and characteristics of each MPPT algorithm are shown. The implementation of transformerless grid-connected inveter system was based on a digital signal processor(DSP). Simulation was carried out for each MPPT method.

  • PDF

Design of DC OPTIMIZER for Maximum Power Generation System of Solar Panel (태양광 패널의 최대 전력 발생 시스템을 위한 DC OPTIMIZER 설계)

  • Kim, Jeong Gyu;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.40-44
    • /
    • 2018
  • In this paper, the efficiency of the solar system is lowered due to the partial shading such as the environmental factors of the solar panel. In order to solve this problem, a DC OPTIMIZER is proposed for a maximum power generation system of a photovoltaic panel. The proposed DC OPTIMIZER is composed of a buck structure that performs the maximum power point tracking (MPPT) control of each module of the solar panel, thus maximizing the efficiency. In order to verify the proposed DC Optimizer, the efficiency was measured by varying the irradiance using a solar simulator instead of the solar panel. As a result, it showed high efficiency characteristics as the maximum energy conversion efficiency was 99.3% at $800w/m^2$, $900w/m^2$, and the average efficiency was 99.06% excluding $100w/m^2$. The maximum efficiency of MPPT was 99.97% at $200w/m^2$, efficiency showed excellent performance.

Development of a Novel MPPT Algorithm of PV System Considering Radiation Variation

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.56-64
    • /
    • 2012
  • This paper proposes a novel maximum power point tracking (MPPT) control algorithm considering radiation to improve efficiency of PV system. The proposed algorithm is composed perturb and observe (PO) method and constant voltage (CV) method. PO method is simple to realize and CV method is possible to tracking MPP with low radiation. Response characteristics of proposed algorithm are compared to conventional MPPT algorithm such as PO method, IC method and CV method with radiation variation. This paper proves the validity of proposed algorithm through the analysis results.

A Efficient MPPT Control Algorithm for LED Street Lighting System using Photovoltaic Systems (태양광을 이용한 LED가로등 시스템을 위한 효율적인 MPPT 충전제어 알고리즘)

  • Kim, Byun-gon;Jeong, Dong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.675-676
    • /
    • 2014
  • Photovoltaic (PV) systems bosed on solar energy offer an environmentally friendly source of electricity. A key feature of such PV sysem is the efficiency of conversion at which the power converter stage can extract the energy from the PV arrays and deliver to the load. The Maximum power point tracking (MPPT) of the PV output for all sunshine conditions allows reduction of the cost installation and maximizes the power output from the PV panel. The proposed algorithm is to control the width of the pulse for battery charging based on the open voltage of the PV panel. As a lab results, the proposed system was implemented functions to adapt to the changes of the PV open voltage, and improved the charging efficiency.

  • PDF

Design of a Thermal Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 열에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Kim, Su-Jin;Park, Kum-Young;Oh, Won-Seok;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2487-2494
    • /
    • 2012
  • In this paper, a thermal energy harvesting circuit with MPPT control is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a thermoelectric generator(TEG) and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a TEG, makes the reference voltages using sampled voltage and delivers the maximum available power to load. Simulation results show that the maximum power efficiency of the designed circuit is 94%. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process, and the chip area except PAD is $1168.7{\mu}m{\times}541.3{\mu}m$.

A Study of New Highly Efficient MPPT Control Algorithm (새로운 고효율 MPPT 제어 알고리즘 고찰)

  • Yu, Gwon-Jong;Jung, Young-Seok;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.11-20
    • /
    • 2002
  • This paper proposed a MPPT(Maximum Power Point Tracking) control algorithm for PV(Photovoltaic) array based on a modified constant voltage control MPPT algorithm at low insolation. This method which combined a reference voltage control and a constant voltage control algorithm. In contrast to the typical conventional MPPT algorithm, the proposed method have been obtained high efficiency and good performance in all insolation intensity. The proposed algorithm is verified through simulation and experiment.

Development of Improved P&O Algorithm of PV System Considering Insolation variation (일사량 변화를 고려한 PV 시스템의 개선된 P&O 알고리즘 개발)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.166-176
    • /
    • 2010
  • The output characteristics of photovoltaic(PV) arrays are nonlinear and are affected by the temperature and solar insolation of cells. Maximum power point tracking(MPPT) methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. This paper proposes a novel maximum power point tracking(MPPT) control algorithm considering insolation to improve efficiency of PV system. The proposed algorithm is composed perturb and observe(P&O) method and constant voltage(CV) method. The proposed method is simulated under varying operating conditions. The effectiveness of these different MPPT methods is investigated thoroughly by PSIM simulation. The simulation results show that this proposed method provides better performance than conventional methods at a variable insolation without self-excited vibration of the power. By the simulation results, the validity of the proposed HB method is proved.

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

Improved P&O algorithm for rapidly changing insolation (일사량 급변에 대한 P&O 알고리즘의 개선)

  • kang A, J.;Kim T. W.;Kim H. S.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.117-120
    • /
    • 2004
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power generation systems changes with varying atmospheric conditions such as solar radiation and temperature, an important consideration in the design of efficient PV system is to track the MPOP correctly. Although the efficiency of these Maximum Power Point Tracking algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This paper describes common MPPT control algorithm: Constant Voltage Control, Perturbation and Observation(P&O), Incremental Conductance (IncCnd) and proposes a new MPPT algorithm based on P&O algorithm. The conception and control principles of the proposed MPPT method are explained in detail and its validity of the proposed method is verified through several simulated results. As it doesn't use digital signal processor, this MPPT method has the merits of both a cost efficiency and a simple control circuit design. Therefore, it is considered that the proposed MPPT method is proper to low power, low cost PV applications.

  • PDF