• Title/Summary/Keyword: MPPT(Maximum power point tracker)

Search Result 29, Processing Time 0.022 seconds

Comparison of MPPT Based on Fuzzy Logic Controls for PMSG

  • Putri, Adinda Ihsani;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.285-286
    • /
    • 2011
  • Maximum Power Point Tracker (MPPT) is the big issue in generating power based on Wind Energy Conversion System. In case of unknown turbine characteristic, it is useful to implement MPPT based on fuzzy logic control. This kind of control is able to find the value of duty cycle to meet maximum power point at particular wind speed. There are many methods to develop MPPT based fuzzy logic controls. In this paper, two of the methods are compared both at low and high fluctuating wind speed.

  • PDF

Innovative Decision Reference Based Algorithm for Photovoltaic Maximum Power Point Tracking

  • Mehrnami, Siamak;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.528-537
    • /
    • 2010
  • A novel decision reference based method for the maximum power point tracking (MPPT) of PV arrays is presented in this paper. The proposed decision reference was derived from a simplified solar cell model. This method solves the problems of conventional MPPT algorithms, such as oscillation of the operating point at the steady state and confusion under rapidly changing insolation. It is shown by simulation and experimental results that the method properly tracks a rapidly changing insolation profile. The signal to noise ratio (SNR) of the new decision reference is also higher than those of conventional P&O and INC methods. An updating subroutine was included in the proposed MPPT algorithm to compensate for temperature and aging effects.

Variable Step Size Maximum Power Point Tracker Using a Single Variable for Stand-alone Battery Storage PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.218-227
    • /
    • 2011
  • The subject of variable step size maximum power point tracking (MPPT) algorithms has been addressed in the literature. However, most of the addressed algorithms tune the variable step size according to two variables: the photovoltaic (PV) array voltage ($V_{PV}$) and the PV array current ($I_{PV}$). Therefore, both the PV array current and voltage have to be measured. Recently, maximum power point trackers that arc based on a single variable ($I_{PV}$ or $V_{PV}$) have received a great deal of attention due to their simplicity and ease of implementation, when compared to other tracking techniques. In this paper, two methods have been proposed to design a variable step size MPPT algorithm using only a single current sensor for stand-alone battery storage PV systems. These methods utilize only the relationship between the PV array measured current and the converter duty cycle (D) to automatically adapt the step change in the duty cycle to reach the maximum power point (MPP) of the PV array. Detailed analyses and flowcharts of the proposed methods are included. Moreover, a comparison has been made between the proposed methods to investigate their performance in the transient and steady states. Finally, experimental results with field programmable gate arrays (FPGAs) are presented to verify the performance of the proposed methods.

A Design of the Solar Tracker for LED Streetlight in Using Solar Cell (태양전지를 이용한 LED 가로등의 태양광 추적 장치 설계)

  • Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.1-9
    • /
    • 2013
  • A standalone LED lighting system in using solar energy has been used usually less than 70W of lighting power because of a troublesome installation and maintenance. In this system, as more and more LED lighting power increases, the capacity of photovoltaic panel does proportionally, and to improve the charging efficiency of solar energy, MPPT(Maximum Power Point Tracking) techniques is used frequently, but the solar tracker is not. In this paper, a solar tracker which traces the light of the sun in varying hour to hour is studied to apply to the standalone LED lighting system. This solar tracker consists of twin axis for tracing the azimuth and altitude respectively, and it has a robust structure with safe mode to stand a strong wind. As a result of analysis, generating efficiency of the traced type has improved on the fixed one 28.84% on average.

Regulated Incremental Conductance (r-INC) MPPT Algorithm for Photovoltaic Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1544-1553
    • /
    • 2019
  • The efficiency of photovoltaic generation systems depends on the maximum power point tracking (MPPT) technique. Among the various schemes presented in the literature, the incremental conductance (INC) method is one of the most frequently used due to its superb tracking ability under changes in insolation and temperature. Generally, conventional INC algorithms implement a simple duty-cycle updating rule that is mainly found on the polarity of the peak-power evaluation function. However, this fails to maximize the performance in both steady-state and transient conditions. In order to overcome this limitation, a novel regulated INC (r-INC) method is proposed in this paper. Like the compensators in automatic control systems, this method applies a digital compensator to evaluate the INC function and improve the capability of power tracking. Precise modeling of a new MPPT system is also presented in the optimized design process. A 120W boost peak power tracker is utilized to obtain comparative test results and to confirm the superiority of the proposed method over existing techniques.

The Study on the Operating Characteristic of MPPT for Photovoltaic System with Inverter Type Airconditionig System (인버터형 에어컨 전원용 태양광시스템의 MPPT 동작 특성에 관한 연구)

  • Yu, G.J.;Cha, I.S.;Lim, J.Y.;Kim, D.H.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.129-135
    • /
    • 1998
  • A photovoltaic system is an infinite and clean energy system. A photovoltaic system consists of a solar cell array, a converter, a inverter and a control unit. It is necessary that the Maximum Power Point Tracker(MPPT) is applied to the photovoltaic system because the output power of solar cell array is varied with irradiation, temperature and external effects. In this paper, the neural networks theory, one of the control methods, is applied to track the maximum power point of the photovoltaic system. The MPPT using neural networks theory is proposed to improve existing energy converter efficiency. Also the theory is applied to operation of inverter type airconditionig system.

  • PDF

A Study on DSP Conrolled Photovoltaic System with Maximum Power Tracking

  • Ahn, Jeong-Joon;Kim, Jae-Mun;Kim, Yuen-Chung;Lee, Joung-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.966-971
    • /
    • 1998
  • The studies on the photovoltaic system are extensively exhaustible and broadly available resourse as a future energy supply. In this paper, a new maximum power point tracker(MPPT) using neural network theory is proposed to improve energy conversion efficiency. The boost converter and neural network controller(NNC) were employed so that the operating point of solar cell was located at the Maximum Power Point. And the back propagation algorithm with one input layer of two inputs(E, CE) and output layer(cnntrol value) was applied to train a neural network. Simulation and experimental results show that the performance of NNC in MPPT of photovoltaic array is better than that of controller based upon the Hill Climbing Method.

  • PDF

Design and Analysis of Power System for Buoy (브이용 전력시스템 설계 및 분석)

  • Jo, Kwan-Jun;Yoo, Hee-Han;Gug, Seung-Gi;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.3 s.119
    • /
    • pp.229-233
    • /
    • 2007
  • This paper presents the performance of PV(Photovoltaic) system, the design of MPPT(Maximum Power Point Tracker). Output of PV power system is DC, and PV power system is linked to the DC bus. The current(I)-voltage(V) output characteristic of PV cells changes with solar irradiance and cell temperature as parameters. As various PV modules respond differently to each of the parameters cited above. Maximum output of PV modules am be achieved by MPPT(Maximum Power Point Tracker) algorithm This paper includes a discussion on the performance of PV module, MPPT algorithm and the influence of PV module angle.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

New MPPT Control Strategy for Two-Stage Grid-Connected Photovoltaic Power Conditioning System

  • Bae, Hyun-Su;Park, Joung-Hu;Cho, Bo-Hyung;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.174-180
    • /
    • 2007
  • In this paper, a simple control method for two-stage utility grid-connected photovoltaic power conditioning systems (PCS) is proposed. This approach enables maximum power point (MPP) tracking control with post-stage inverter current information instead of calculating solar array power, which significantly simplifies the controller and the sensor. Furthermore, there is no feedback loop in the pre-stage converter to control the solar array voltage or current because the MPP tracker drives the converter switch duty cycle. This simple PCS control strategy can reduce the cost and size, and can be utilized with a low cost digital processor. For verification of the proposed control strategy, a 2.5kW two-stage photovoltaic grid-connected PCS hardware which consists of a boost converter cascaded with a single-phase inverter was built and tested.