• Title/Summary/Keyword: MPPT(Maximum Power Point Tracking) Algorithm

Search Result 178, Processing Time 0.028 seconds

A Novel Maximum Power Point Tracking Control Algorithm for Photovoltaic System (태양광 발전 시스템을 위한 새로운 최대 출력점 추종 제어 알고리즘)

  • Kim, Tae-Yeop;Lee, Yun-Gyu;An, Ho-Gyun;Park, Seung-Gyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.3
    • /
    • pp.133-141
    • /
    • 2002
  • Most maximum power point tracking(MPPT) control algorithm is based on Perturb and Observe(P&O) and Incremental Conductance(IncCond). In comparison with P&O and IncCond algorithm, the dynamic and tracking characteristic of IncCond algorithm is better than P&O algorithm in condition of rapidly changing solar radiation. But in the case of digital implementation, the InCond algorithm has error en decision of maximum power operation point(MPOP). To solve this problem, this paper proposes a improved IncCond algorithm, which can determine the MPOP correctly by inserting the test signal in control input. This paper proposes a novel MPPT control algorithm for the digitally implemented photovoltaic system in condition of rapidly changing solar radiation. To verify the validity of the proposed control algorithm. the computer simulation and experiment are carried out.

A Study on the MPPT Control Algorithm and Efficiency Evaluation Method (MPPT제어 알고리즘 고찰 및 효율시험 평가법)

  • 유권종;김기현;정영석;김영석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.164-172
    • /
    • 2001
  • This paper describes common MPPT(Maximum Power Point Tracking) control algorithm; Constant Voltage Control, P&O(Perturbation and Observation), IncCond(Incremental Conductance), and investigated it\`s efficiency. Though simulation and efficiency evaluation, the steady/transient states characteristics and efficiency of control algorithms are analyzed respectively. Also, two-mode MPPT control to improve on the existing control algorithm. Moreover, is proposed for high efficiency this paper suggests a topology for MPPT measuring efficiency and a method of examination.

  • PDF

An Improved Variable Step Size MPPT Algorithm Based on INC

  • Xu, Zhi-Rong;Yang, Ping;Zhou, Dong-Bao;Li, Peng;Lei, Jin-Yong;Chen, Yuan-Rui
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.487-496
    • /
    • 2015
  • In order to ensure that photovoltaic (PV) systems work at the maximum power point (MPP) and maximize the economic benefits, maximum power point tracking (MPPT) techniques are normally applied to these systems. One of the most widely applied MPPT methods is the incremental conductance (INC) method. However, the choice of the step size still remains controversial. This paper presents an improved variable step size INC MPPT algorithm that uses four different step sizes. This method has the advantages of INC but with the ability to validly adjust the step size to adapt to changes of the PV's power curve. The presented algorithm also simultaneously achieves increased rapidity and accuracy when compared with the conventional fixed step size INC MPPT algorithm. In addition, the theoretical derivation and specific applications of the proposed algorithm are presented here. This method is validated by simulation and experimental results.

Research and Experimental Implementation of a CV-FOINC Algorithm Using MPPT for PV Power System

  • Arulmurugan, R.;Venkatesan, T.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1389-1399
    • /
    • 2015
  • This research suggests maximum power point tracking (MPPT) for the solar photovoltaic (PV) power scheme using a new constant voltage (CV) fractional order incremental conductance (FOINC) algorithm. The PV panel has low transformation efficiency and power output of PV panel depends on the change in weather conditions. Possible extracting power can be raised to a battery load utilizing a MPPT algorithm. Among all the MPPT strategies, the incremental conductance (INC) algorithm is mostly employed due to easy implementation, less fluctuations and faster tracking, which is not only has the merits of INC, fractional order can deliver a dynamic mathematical modelling to define non-linear physiognomies. CV-FOINC variation as dynamic variable is exploited to regulate the PV power toward the peak operating point. For a lesser scale photovoltaic conversion scheme, the suggested technique is validated by simulation with dissimilar operating conditions. Contributions are made in numerous aspects of the entire system, including new control algorithm design, system simulation, converter design, programming into simulation environment and experimental setup. The results confirm that the small tracking period and practicality in tracking of photovoltaic array.

Maximum power point tracking method for building integrated PV system (건물용 태양광 컨버터의 최대전력 추종 기법 개발)

  • Yu, Byung-Gyu;Yu, Gwon-Jong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.299-303
    • /
    • 2011
  • This paper proposes a novel sensorless maximum power point tracking (11PPT) algorithm for PV systems. The method is based on dividing the operating time into several intervals in which the PV terminals are short circuited in one interval and the calculated short-current of the PV is obtained and used to determine the optimum operating point where the maximum output power can be obtained. The proposed MPPT algorithm has been introduced into a current-controlled boost converter whose duty ratio is controlled to the maintain MPP condition. The same sequence is then repeated regularly capturing the PV maximum power. The main advantage of this method is eliminating the current sensor. Meanwhile, this MPPT algorithm reduces the power oscillations around the peak power point which occurs with perturbation and observation algorithms. In addition, the total cost will decrease by removing the current sensor from the PV side. Finally, simulation results confirm the accuracy of the proposed method.

  • PDF

Improvement of Power Generation of Microbial Fuel Cells using Maximum Power Point Tracking (MPPT) and Automatic Load Control Algorithm (최대전력점추적방법과 외부저항 제어 알고리즘을 이용한 미생물연료 전지의 전력생산 최대화)

  • Song, Young Eun;Kim, Jung Rae
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • A microbial fuel cell (MFC) and bioelectrochemical systems are novel bioprocesses which employ exoelectrogenic biofilm on electrode as a biocatalyst for electricity generation and various useful chemical production. Previous reports show that electrogenic biofilms of MFCs are time varying systems and dynamically interactive with the electrically conductive media (carbon paper as terminal electron acceptor). It has been reported that maximum power point tracking (MPPT) method can automatically control load by algorithm so that increase power generation and columbic efficiency. In this study, we developed logic based control strategy for external load resistance by using $LabVIEW^{TM}$ which increases the power production with using flat-plate MFCs and MPPT circuit board. The flat-plate MFCs inoculated with anaerobic digester sludge were stabilized with fixed external resistance from $1000{\Omega}$ to $100{\Omega}$. Automatic load control with MPPT started load from $52{\Omega}$ during 120 hours of operation. MPPT control strategy increased approximately 2.7 times of power production and power density (1.95 mW and $13.02mW/m^3$) compared to the initial values before application of MPPT (0.72 mW and $4.79mW/m^3$).

Improved Global Maximum Power Point Tracking for Photovoltaic System via Cuckoo Search under Partial Shaded Conditions

  • Shi, Ji-Ying;Xue, Fei;Qin, Zi-Jian;Zhang, Wen;Ling, Le-Tao;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.287-296
    • /
    • 2016
  • Conventional maximum power point tracking (MPPT) methods are ineffective under partially shaded conditions because multiple local maximum can be exhibited on power-voltage characteristic curve. This study proposes an improved cuckoo search (ICS) MPPT method after investigating the cuckoo search (CS) algorithm applied in solving multiple MPPT. The algorithm eliminates the random step in the original CS algorithm, and the conception of low-power, high-power, normal and marked zones are introduced. The adaptive step adjustment is also realized according to the different stages of the nest position. This algorithm adopts the large step in low-power and marked zones to reduce search time, and a small step in high-power zone is used to improve search accuracy. Finally, simulation and experiment results indicate that the promoted ICS algorithm can immediately and accurately track the global maximum under partially shaded conditions, and the array output efficiency can be improved.

Comparative Study of Maximum Power Point Tracking Algorithms Using PV Array Simulator (태양전지 모의 전원을 이용한 MPPT 알고리즘의 비교 고찰)

  • Jung Youngseok;So Junghun;Yu Gwonjong;Choi Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.234-237
    • /
    • 2003
  • As the maximum power operating point (MPOP) of photovoltaic (PV) power systems changes with changing atmospheric conditions, the efficiency of maximum power point tracking (MPPT) is important in PV power systems. Many MPPT techniques have been considered in the past, but techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. In this paper, we proposed a new MPPT control method called improved perturb and observe method (ImP&O), anda simple voltage and current characteristic equation of a PV array for PV array simulator. Experimental results verify the accuracy and excellent performance of the proposed MPPT method. ImP&O algorithm is very simple, and has successful tracked the MPOP, even in case of rapidly changing atmospheric conditions.

  • PDF

A Novel Hybrid MPPT Method to Mitigate Partial Shading Effects in PV System (PV 시스템의 부분 음영을 대비한 새로운 하이브리드 MPPT 기법)

  • Kim, Dong-Gyun;Kim, Soo-Bin;Jo, Yeong-Min;Choy, Ick;Cho, Sang-Yoon;Lee, Young-Kwoun;Choi, Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.21-22
    • /
    • 2015
  • The maximum power point of a photovoltaic array alters with changing atmospheric conditions, temperature conditions, shadow conditions, so it is required to track maximum power point. As much as MPPT(Maximum Power Point Tracking) is important in photovoltaic systems, many MPPT techniques have been developed. In this paper, several major existing MPPT methods are comparatively analyzed and novel hybrid MPPT algorithm is proposed. The proposed hybrid MPPT algorithm is developed in combination with traditional MPPT methods to complement each other for improving performance and mitigating partial shading effects. The proposed algorithm is validated by using PISIM simulation tool and experiment in 3kW system.

  • PDF

Adaptive Partial Shading Determinant Algorithm for Solar Array Systems

  • Wellawatta, Thusitha Randima;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1566-1574
    • /
    • 2019
  • Maximum power point tracking (MPPT) under the partial shading condition is a challenging research topic for photovoltaic systems. Shaded photo-voltaic module result in complex peak patterns on the power versus voltage curve which can misguide classical MPPT algorithms. Thus, various kinds of global MPPT algorithms have been studied. These have typically consisted of partial shading detection, global peak search and MPPT. The conventional partial shading detection algorithm aims to detect all of the occurrences of partial shading. This results in excessive execution of global peak searches and discontinuous operation of the MPPT. This in turn, reduces the achievable power for the PV module. Based on a theoretical investigation of power verse voltage curve patterns under various partial shading conditions, it is realized that not all the occurrences of partial shadings require a global peak search. Thus, an intelligent partial shading detection algorithm that provides exact identification of global peak search necessity is essential for the efficient utilization of solar energy resources. This paper presents a new partial shading determinant algorithm utilizing adaptive threshold levels. Conventional methods tend to be too sensitive to sharp shading patterns but insensitive to smooth patterns. However, the proposed algorithm always shows superb performance, regardless of the partial shading patterns.