Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.4.225

Improvement of Power Generation of Microbial Fuel Cells using Maximum Power Point Tracking (MPPT) and Automatic Load Control Algorithm  

Song, Young Eun (School of Chemical and Biomolecular Engineering, Pusan National University)
Kim, Jung Rae (School of Chemical and Biomolecular Engineering, Pusan National University)
Publication Information
KSBB Journal / v.29, no.4, 2014 , pp. 225-231 More about this Journal
Abstract
A microbial fuel cell (MFC) and bioelectrochemical systems are novel bioprocesses which employ exoelectrogenic biofilm on electrode as a biocatalyst for electricity generation and various useful chemical production. Previous reports show that electrogenic biofilms of MFCs are time varying systems and dynamically interactive with the electrically conductive media (carbon paper as terminal electron acceptor). It has been reported that maximum power point tracking (MPPT) method can automatically control load by algorithm so that increase power generation and columbic efficiency. In this study, we developed logic based control strategy for external load resistance by using $LabVIEW^{TM}$ which increases the power production with using flat-plate MFCs and MPPT circuit board. The flat-plate MFCs inoculated with anaerobic digester sludge were stabilized with fixed external resistance from $1000{\Omega}$ to $100{\Omega}$. Automatic load control with MPPT started load from $52{\Omega}$ during 120 hours of operation. MPPT control strategy increased approximately 2.7 times of power production and power density (1.95 mW and $13.02mW/m^3$) compared to the initial values before application of MPPT (0.72 mW and $4.79mW/m^3$).
Keywords
Microbial fuel cell (MFC); Bioelectrochemical system (BES); maximum power point tracking (MPPT); Flat-plate MFC; power density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Boghani, H. C., Kim, J. R., Dinsdale, R. M., Guwy, A. J., and Premier, G. C. (2013) Control of power sourced from a microbial fuel cell reduces its start-up time and increases bioelectrochemical activity. Bioresour. Technol. 140: 277-285.   DOI
2 Woodward, L., Tartakovsky, B., Perrier, M., and Srinivasan, B. (2009) Maximizing power production in a stack of microbial fuel cells using multiunit optimization method. Biotechnol. Prog. 25: 676-682.   DOI   ScienceOn
3 Premier, G. C., Kim, J. R., Michie, I., Dinsdale, R. M., and Guwy, A. J. (2011) Automatic control of load increases power and efficiency in a microbial fuel cell. J. Power Sources. 196: 2013-2019.   DOI
4 Wang, H., Park, J. D., and Ren, Z. (2012) Active energy harvesting from microbial fuel cells at the maximum power point without using resistors. Environ. Sci. Technol. 46: 5247-5252.   DOI
5 Dolara, A., Faranda, R., and Leva, S. (2009) Energy comparison of seven MPPT techniques for PV systems. J. Electromagnet. Anal. Appl. 1: 152-162.
6 Safari, A. and Mekhilef, S. (2011) Simulation and hardware implementation of incremental conductance MPPT with direct control method using Cuk converter. Ind. Electronic. IEEE Transac. 58: 1154-1161.   DOI   ScienceOn
7 Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro. 7: 375-381.   DOI   ScienceOn
8 Rabaey, K., Lissens, G. and Verstraete, W. (2005) "Microbial fuel cells: Performances and perspectives" in Biofuels for Fuel Cells: Biomass Fermentation Towards Usage in Fuel Cells, ed. London: IWA Publishing.
9 Dekker, A., Heijne, A. T., Saakes, M., Hamelers, H. V. M., and Buisman, C. J. N. (2009) Analysis and Improvement of a Scaled-Up and Stacked Microbial Fuel Cell. Environ. Sci. Technol. 43: 9038-9042.   DOI
10 Fan, Y., Han, S. K., and Liu, H. (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ. Sci. 5: 8273-8280.   DOI
11 Chen, M., Zhang, F., Zhang, Y., and Zeng, R. J. (2013) Alkali production from bipolar membrane electrodialysis powered by microbial fuel cell and application for biogas upgrading. Appl. Energy. 103: 428-434.   DOI
12 Kim, Y. and Logan, B. E. (2011) Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination. Environ. Sci. Technol. 45: 5840-5845.   DOI
13 Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., and Kim, B. H. (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 19: 607-613.   DOI   ScienceOn
14 Rao, J., Richter, G., Von Sturm, F. and Weidlich, E. (1976) The performance of glucose electrodes and the characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerget. 3: 139-150.   DOI
15 Kaur, A., Kim, J. R., Michie, I., Dinsdale, R. M., Guwy, A. J., and Premier, G. C. (2013) Microbial fuel cell type biosensor for specific volatile fatty acids using acclimated bacterial communities. Biosen. Bioelectron. Accepted.
16 Rabaey, K. and Rozendal, R. A. (2010) Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8: 706-716.   DOI   ScienceOn
17 Berk, R. S. and Canfield, J. H. (1964) Bioelectrochemical energy conversion. Appl. Microbiol. 12: 10-12.
18 Potter, M. C. (1911) Electrical effects accompanying the decomposition of organic compounds. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character. 84: 260-276.
19 Davis, J. B. and Yarbrough, H. F. (1962) Preliminary experiments on a microbial fuel cell. Science. 137: 615-616.   DOI
20 Cohen, B. (1931) The bacterial culture as an electrical half-cell. J. Bacteriol. 21: 18-19.
21 Cheng, S., Liu, H. and Logan, B. E. (2006) Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochem. Comm. 8: 489-494.   DOI   ScienceOn
22 Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., and Lovley, D. R. (2010) Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds. Mbio. 1.