• Title/Summary/Keyword: MPPT(Maximum Power Point Tracking) Algorithm

Search Result 178, Processing Time 0.028 seconds

MPPT Control of Photovoltaic using Variable IC Method (가변 IC 방법을 이용한 태양광 발전의 MPPT 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.8
    • /
    • pp.27-34
    • /
    • 2012
  • This paper proposes variable incremental conductance(IC) algorithm for maximum power point tracking(MPPT) control of photovoltaic. The conventional perturbation & observation(PO) and IC MPPT control algorithm generally uses fixed step size. A small step size reduces a tracking error in the steady state but slows a tracking speed in the transient state. Also, a large step size is fast a tracking speed but increases a tracking error. Therefore, this paper proposes variable IC MPPT algorithm that adjust automatically step size according to operating conditions. To improve a tracking speed and accuracy, when operating point is far from the maximum power point(MPP), the step size uses maximum value and when a operating point is near from the MPP, the step size uses variable step size that adjust according to slope of P-V curve. The validity of MPPT algorithm proposed in this paper prove through compare with conventional PO and IC MPPT algorithm.

Comparison Study of Maximum Power Point Tracking Control with Changing of Radiation (일사량 변화에 대한 최대전력점 추종 제어의 비교 연구)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1075-1082
    • /
    • 2010
  • This paper analyzes a operating characteristic for maximum power point tracking (MPPT) of photovoltaic generation system. MPPT methods are used to maximize PV array output power by tracking maximum power point(MPP) continuously. To increase the output efficiency of PV system, it is important to have more efficient MPPT. MPPT algorithm is widely used the control method such as the perturbation and observation(PO) method, incremental conductance(IC) method and constant voltage(CV) method. In case of the radiation is changed, this paper proposes a response characteristic with MPPT control algorithms. Also, it proposes the direct for a novel MPPT control algorithm development through the analyzed data, hereby proves the effectiveness of this paper.

Moth-Flame Optimization-Based Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions

  • Shi, Ji-Ying;Zhang, Deng-Yu;Xue, Fei;Li, Ya-Jing;Qiao, Wen;Yang, Wen-Jing;Xu, Yi-Ming;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1248-1258
    • /
    • 2019
  • This paper presents a moth-flame optimization (MFO)-based maximum power point tracking (MPPT) method for photovoltaic (PV) systems. The MFO algorithm is a new optimization method that exhibits satisfactory performance in terms of exploration, exploitation, local optima avoidance, and convergence. Therefore, the MFO algorithm is quite suitable for solving multiple peaks of PV systems under partial shading conditions (PSCs). The proposed MFO-MPPT is compared with four MPPT algorithms, namely the perturb and observe (P&O)-MPPT, incremental conductance (INC)-MPPT, particle swarm optimization (PSO)-MPPT and whale optimization algorithm (WOA)-MPPT. Simulation and experiment results demonstrate that the proposed algorithm can extract the global maximum power point (MPP) with greater tracking speed and accuracy under various conditions.

Practical Implementation of Maximum Power Tracking Based Short-Current Pulse Method for Thermoelectric Generators Systems

  • Yahya, Khalid;Bilgin, Mehmet Zeki;Erfidan, Tarik
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1201-1210
    • /
    • 2018
  • The applications of thermoelectric generators (TEGs) have received a lot of attention both in terms of harvesting waste thermal energy and the need for multi-levels of power. It is critical to track the optimum electrical operating point using DC to DC converters controlled by a pulse that is generated through a maximum power point tracking algorithm (MPPT). In this paper, the hardware implementation of a short-current pulse algorithm has been demonstrated under steady stated and transient conditions. In addition, the MPPT algorithm has been proposed, which is one of the most effective and applicable algorithms for obtaining the maximum power point of TEGs. During this study, the proposed prototype has been validated both analytically and experimentally. It has also demonstrated successful performance, which highlights the claimed advantages of the proposed MPPT solution.

Analog Control Algorithm for Maximum Power Trackers Employed in Photovoltaic Applications

  • Ji, Sang-Keun;Jang, Du-Hee;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.503-508
    • /
    • 2012
  • Tracking the Maximum Power Point (MPP) of a photovoltaic (PV) array is usually an essential part of a PV system. The problem addressed by Maximum Power Point Tracking (MPPT) techniques is to find the voltage $V_{MPP}$ or current $I_{MPP}$ at which a PV array should operate to generate the maximum power output $P_{MPP}$ under a given temperature and irradiance. MPPT control methods such as the perturb and observe method and the incremental conductance method require a microprocessor or DSP to determine if the duty cycle should be increased or not. This paper proposes a simple and fast analog MPPT method. The proposed control scheme tracks the MPP very quickly and its hardware implementation is simple when compared with the conventional techniques. The new algorithm can successfully track the MPP even in the case of rapidly changing atmospheric conditions. In addition, it has higher efficiency than ordinary algorithms.

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

The Improved Maximum Power Point Tracking Algorithm under varying of irradiance (일사량 변화를 고려한 개선된 MPPT 알고리즘)

  • Lee, Gwui-Han;Jung, Young-Seok;Lee, Youn-Seop;Cha, Han-Ju;KO, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.17-24
    • /
    • 2015
  • The MPPT(Maximum Power Point Tracking) techniques are employed in photovoltaic (PV) systems to maximize the PV array output power which depends on solar irradiance and temperature. The dynamic MPPT performance under varying irradiance conditions affects the impact on overall PV system performance. This paper presents the improved MPPT algorithm by the simulation comparison with other algorithms. The simulation models are made by the Matlab & Simulink. The result of simulation, the dynamic MPPT efficiency of proposed algorithm is higher than the other algorithms.

An Optimal Maximum Power Point Tracking Algorithm for Wind Energy System in Microgrid

  • Nguyen, Thanh-Van;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.382-383
    • /
    • 2018
  • To increase the efficiency of a wind energy conversion system (WECS), the maximum power point tracking (MPPT) algorithm is usually employed. This paper proposes an optimal MPPT algorithm which tracks a sudden wind speed change condition fast. The proposed method can be implemented without the prior information on the wind turbine parameters, generator parameters, air density or wind speed. By investigating the directions of changes of the mechanical output power in wind turbine and rotor speed of the generator, the proposed MPPT algorithm is able to determine an optimal speed to achieve the maximum power point. Then, this optimal speed is set to the reference of the speed control loop. As a result, the proposed MPPT algorithm forces the system to operate at the maximum power point by using a three-phase converter. The simulation results based on the PSIM are given to prove the effectiveness of the proposed method.

  • PDF

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

A New MPPT Scheme Based on Variable Step Size Incremental Conductance Method for PV Distributed Generation (태양광 발전시스템을 위한 새로운 가변폭 변조방식의 최대전력점 추종기법)

  • Ko, Eun-Gi;Kim, Jin-Ho;Park, Jun-Yeol;Lee, Dong-Myung
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.565-567
    • /
    • 2010
  • This paper proposes a new Maximum Power Point Tracking (MPPT) control algorithm for PV-Cell (Photo voltaic) based on Incremental Conductance MPPT algorithm. The ICN (Incremental Conductance method) algorithm is widely used due to the high tracking accuracy and adaptability to the rapidly changing isolation condition. In this paper, a modified ICN MPPT algorithm is proposed. This method adjusts automatically the step-size of reference to track the PV-Cell maximum power point, thus it improves the maximum power point tracking speed and accuracy.

  • PDF