• Title/Summary/Keyword: MPPO

Search Result 8, Processing Time 0.025 seconds

Synthesis of Phospholene Oxide Catalysts for Hydrolysis Stabilizers (가수분해 방지제 제조용 Phospholene Oxide 촉매의 합성)

  • Lee, Jin-Ha;Lee, Chang-Young
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.86-91
    • /
    • 2015
  • The MPPO (3-methyl-1-phenyl-2-phospholene-1-oxide) was prepared by using various polymerization inhibitors such as BHT (2,6-di-tert-butyl-4-methylphenol), TBC (4-tert-butylcatechol), and copper stearate. The MPPO was confirmed by the analysis using FTIR, $^1H$-NMR, and GC/MS regardless of the type of inhibitors. The yield of MPPO increased with the increase of reaction time, whereas the purity of MPPO decreased slightly. The yield and purity of MPPO increased with temperature, but the MPPO prepared by using copper stearate as a polymerization inhibitor exhibited no changes in the purity. The amount of inhibitors had no effect on the yield of MPPO. The purity of MPPOs increased with the amount of inhibitors, but the MPPO prepared by using BHT showed no changes of the purity. We found that the MPPO prepared by using copper stearate exhibited the highest catalytic activity for diphenylcarbodiimide synthesis.

An investigation of electrical characteristics of MPPO(Modified-Polyphenylene Oxide) by gas ion implantion (가스이온 주입에 의한 MPPO의 전기적 특성조사)

  • 이준호;이재상;임석진;조용섭;주포국;최병호;이재형
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.430-433
    • /
    • 1999
  • MPPO(Modified-Polyphenylene Oxide) was irradiated with helium, nitrogen, and argon ions at the ion energy of 50 keV and 70 keV from the dose region of 5$\times$10$^{15}$ to 5$\times$10$^{16}$ ions/$\textrm{cm}^2$. The resistance of the irradiated MPPO surface could be decresed about 10$^{10}$ to 10$^{7}$ $\Omega$/sq with increasing the total ion dose and ion energy. Chemical characteristics of the irradiated surface were analyzed by XPS(X-ray photoelectron spectroscopy).

  • PDF

Strategies to Design Efficient Donor-Acceptor (D-A) Type Emitting Molecules: Molecular Symmetry and Electron Accepting Ability of D-A Type Molecules

  • Hyun Gi Kim;Young-Seok Baek;Sung Soo Kim;Sang Hyun Paek;Young Chul Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.633-639
    • /
    • 2023
  • We synthesized 2-(10-methyl-10H-phenothiazin-3-yl)-5-phenyl-1,3,4-oxadiazole (MPPO) and 5,5-(10-methyl-10H-phenothiazin-3,7-diyl)-bis-(2-phenyl-1,3,4-oxadiazole) (DPPO). MPPO has both electron-donating and electron-accepting substituents with asymmetric molecular geometry. By incorporating one extra electron-accepting group into MPPO, we created a symmetric molecule, which is DPPO. The optical and electrochemical properties of these compounds were measured. The lowest unoccupied molecular orbital (LUMO) level of DPPO was lower than that of MPPO. The excited-state dipole moment of DPPO, with symmetric geometry, was calculated to be 4.1 Debye, whereas MPPO, with asymmetric geometry, had a value of 7.0 Debye. The charge-carrier mobility of both compounds was similar. We fabricated non-doped organic light-emitting diodes (OLEDs) using D-A type molecules as an emitting layer. The current efficiency of the DPPO-based device was 7.8 cd/A, and the external quantum efficiency was 2.4% at 100 cd/m2, demonstrating significantly improved performance compared to the MPPO-based device. The photophysical and electroluminescence (EL) characteristics of the two D-A type molecules showed that molecular symmetry, as well as the lowered LUMO level of DPPO, played critical roles in the enhancement of EL performance.

Relation Between Electrical & Optical Properties of Ion Implanted MPPO(Modified-Polyphenylene Oxide)

  • 임석진;이재상;이준호;조용섭;주포국;최병호;이재형
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.207-207
    • /
    • 1999
  • 고분자 재료에 이온을 주입함으로서 소재 표면은 경도, 내마모, 내피로성의 기계적인 특성과 내부식성의 화학적 특성, 전기 전도도, 광학적 특성(Optical Density)의 물리적인 특성이 향상된다. 본 논문에서는 MPPO(Modified-Polyphenylene Oxide) 표면에 Ar, N2, He, H 이온을 50, 70, 100 KeV, Dose 1$\times$1014~1$\times$1017 ions/$ extrm{cm}^2$로 조사하였다. XPS와 RBS로 소재의 Binding Energy와 이온의 침투깊이, 분자 조성과 결합 상태 등의 특성을 관찰하였다. 표면 저항값은 1$\times$1011~6.7$\times$106($\Omega$/$\square$)으로 감소함으로서 전기 전도도가 향상되었고, Optical Density는 증가하여 전기적 특성과 광학적 특성간의 상관 관계가 있음을 보여준다.

  • PDF

Electrical & Optical Properties of Ion Implanted MPPO (Modified-Polyphenylene Oxide)

  • 임석진;김옥경;장동욱;이재상;하장호;최병호;이재형
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.189-189
    • /
    • 2000
  • 고분자 재료에 이온을 주입함으로서 경도, 내마모, 내피로성의 기계적인 특성과 내부식성 등의 화학적 특성이 향상되며, 표면 전기전도도와 광학밀도(optical density)가 변한다. 본 연구에서는 MPPO(Modified-Polyphenlene Oxide) 표면에 N2, Ar, Xe 이온을 에너지 50keV, 선량(dose)을 1$\times$1015에서 1$\times$1017ions/cm2로 증가시키면서 조사하였다. 이온 조사량의 증가에 따라 표면 저항이 2$\times$1015에서 6$\times$106($\Omega$/$\square$)으로 감소하여 표면 전기전도도가 향상되었다. Ar 이온은 1016ion/cm2이하의 조사량(dose)에서 N2보다 표면 저항을 더 많이 감소하는데 반해 1016ion/cm2 이상의 조사량에서는 Ar과 N2의 표면 저항이 비슷한 값을 나타냈다. Xe은 Ar과 N2이온에 비하여 전체적으로 표면저항이 많이 감소하여 전도도의 향상은 Xe, Ar, N2 순서로 질량이 큰 이온이 조사 효과가 큰 것으로 나타났다. 소재 표면은 SIMS 분석을 통하여 깊이에 따른 주입이온의 분포를 관찰하였으며, 표면 색상은 황색에서 갈색을 거쳐 암갈색으로 변화함으로서 가시광선에 대한 반사율(reflectance)이 감소하고 광학밀도(optical density)가 증가하여 광학적 특성이 변하였다. 이온 주입 후 에너지 전이에 의한 효과는 optical gap를 감소시켜 광학밀도(optical density)와 표면 전기 전도도를 증가시킨다. 이에 따라 본 논문에서는 이온주입에 의한 광학적, 전기적 특성간의 상관관계를 밝히고자 한다.

  • PDF

Preparation and Characterization of PPO/PS-b-PSSA Blend for Fuel Cell (연료전지막을 위한 PPO/PS-b-PSSA 블랜드의 제조와 분석)

  • Woo, Jung-Kyu;Ahn, Sung-Guk;Cho, Chang-Gi
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.175-176
    • /
    • 2003
  • Generally, The protone exchange membrane (PEM) contains cationic exchange groups such as SO3$\^$-/ group. The poly(styrene sulfonic acid) (PSSA) and its copolymers are widely studied because of easily synthetic method and higher conductivities. However, PSSA is not used individually because of poor physical properties such as brittleness and relatively lower Tg. So some researchers are concerned engineering plastics (EP) such as polyimides, polysulfone, polyketones, and poly(2,6-dimethyl-1,4-phenylene oxide) (MPPO) etc. (omitted)

  • PDF

The Prediction of Phase Morphology of Injection Molded Polymer Blends (사출성형된 고분자 블렌드의 형태학적 상구조 예측)

  • Son, Young-Gon
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.193-208
    • /
    • 2004
  • Morphology of injection molded polymer blend was investigated by experimental and theoretical approach. In experiments, the effects of injection speed and injection temperature on the morphology of injection molded MPPO/Nylon 6 blend were investigated. The morphology distribution across the part thickness was clearly observed in injection molded blend. We could observe several distinct regions across the thickness of molded part: skin layer, subskin layer and core region. The skin layer where the dispersed phase is fine and highly deformed to the flow direction is observed to be located near the part surface. The subskin layer located at inner region of the skin layer also observed. In the subskin layer, the dispersed phase is coarser than that of skin layer and deforms to the flow direction. Based on the experimental results, the calculation scheme to predict the morphology of injection molded polymer blend was suggested. The morphology of injection molded polymer blend could be predicted in corporation with the result of flow analysis obtained from commercial software for injection molding process and the theory of drop behavior under the flow. The suggested calculation scheme could predict the effect of injection conditions on the morphology of injection molded parts.