• Title/Summary/Keyword: MPLS regression

Search Result 21, Processing Time 0.025 seconds

Quantitative Analysis of Contents of Vegetable Oils in Sesame Oils by NIRS (근적외선분광광도법을 이용한 참기름중 이종식용유지 정량법에 관한 연구)

  • Kim, Jae-Kwan;Kim, Jong-Chan;Ko, Hoan-Uck;Lee, Jung-Bock;Kim, Young-Sug;Park, Yong-Bae;Lee, Myung-Jin;Kim, Myung-Gil;Kim, Kyung-A;Park, Eun-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.22 no.4
    • /
    • pp.257-267
    • /
    • 2007
  • The possibility of rapid non-destructive qualitative and quantitative analysis of vegetable oils such as perilla, com, soybean and rapaseed oils in sesame oils was evaluated. A calibration equation calculated by MPLS(Modified Partial Least Squares) regression technique was developed and coefficients of determination for perilla oil, com oil, soybean oil and rapaseed oil contents were 0.9992, 0.9694, 0.9795 and 0.9790 respectively. According to the data obtained from validation study, $R^2$ of contents of perilla, com, soybean, rapaseed oils were 0.997, 0.848, 0.957 and 0.968, and SEP of content of them 0.747, 5.069, 3.063 and 3.000 by MPLS respectively. The results indicate that the NIRS procedure can potentially be used as a non-destructive analysis method for the rapid and simple measurement of sesame oil mixed with other vegetable oils. The detection limits of the NIRS for perilla oil, com oil, soybean oil and rapaseed oil were presumed as 2%, $15{\sim}20%,\;15{\sim}20%$ and 10%, respectively.

Quantitative Analysis of Acid Value, Iodine Value and Fatty Acids Content in Sesame Oils by NIRS (근적외선분광광도법을 이용한 참기름의 산가, 요오드가, 지방산정량법에 관한 연구)

  • Kim, Jae-Kwan;Lee, Myung-Jin;Kim, Myung-Gill;Kim, Kyung-A;Park, Eun-Mi;Kim, Young-Sug;Ko, Hoan-Uck;Son, Jin-Seok
    • Journal of Food Hygiene and Safety
    • /
    • v.21 no.4
    • /
    • pp.204-212
    • /
    • 2006
  • This study was conducted to investigate the possibility of rapid and non-des tructive evalution of AV (Acid Value), IV (Iodine Value) and fatty acids in sesame oils. The samples were scanned over the range $400\sim2500nm$ using transmittance spectrum of NIRS(Near-infrared spectroscopy). A calibration equation calculated by MPLS regression technique was developed and correlation coefficient of determination for AV, IV, palmitic acid, stearic acid, linoleic acid and linolenic acid content were 0.9907, 0.9677, 0.9527, 0.9210, 0.9829, 0.9736 and 0.9709 respectively. The validation model for measuring the AV content had R of 0.989, SEP of 0.058 and IV content had R of 0.944, SEP of 0.562 and palmitic acid content had R of 0.924, SEP of 0.194 and stearic acid content had R of 0.717, SEP of 0.168 and oleic acid content had R of 0.989, SEP of 0.221 and linoleic acid content had R of 0.967, SEP of 0.297 and linolenic acid content had R of 0.853, SEP of 0.480 by MPLS. The obtained results indicate that the NIRS procedure can potentially be used as a non-destructive analysis method for the purpose of rapid and simple measurement of AV, IV and fatty acids in sesame oils.

Rapid Measure of Color and Catechins Contents in Processed Teas Using NIRS (근적외선 분광광도계를 이용한 차 제품의 색상 및 카테킨류의 신속 측정)

  • Chun, Jong-Un
    • Korean Journal of Plant Resources
    • /
    • v.23 no.4
    • /
    • pp.386-392
    • /
    • 2010
  • This study was done to measure the color and catechins contents in processed teas using the whole bands (400~2500 nm) with near-infrared spectroscopy(NIRS). The powder colors of 109 processed teas were measured with a colorimeter. The a/b ratios in Hunter color scale in processed teas accounted for about 98.9% of the variation in the fermentation degree(FD), indicating that the a/b ratio was a very useful trait for assessing fermentation degree. Also tea powders were scanned in the visible bands used with NIRSystem. The calibration equations for powder colors were developed using the regression method of modified partial least squares(MPLS) with the internal cross validation. The equations had low SECV (standard errors of cross-validation), and high $R^2$ (coefficient of determination in calibration) values with 0.996~1.00, indicating that the visible bands(400~700 nm) with NIRS could be used to rapidly measure the variables related to powder color and fermentation degree. Also another powders of 137 processed teas were scanned at 780~2500 nm bands in the reflectance mode. The calibration equations were developed using the regression method of MPLS with the internal cross validation. The equations had low SECV, and high $R^2$ (0.896~0.983) values, showing that NIRS could be used to rapidly discriminate the contents of EGC($R^2$=0.919), EC(0.896), EGCg(0.978), ECg(0.905) and total catechins(0.983) in processed teas with high precision and ease.

Analysis on Food Waste Compost by Near Infrared Reflectance Spectroscopy(NIRS) (Near Infrared Reflectance Spectroscopy(NIRS)에 의한 음식물 쓰레기 퇴비 분석에 관한 연구)

  • Lee Hyo-Won;Kil Dong-Yong
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.3
    • /
    • pp.281-289
    • /
    • 2005
  • In order to find out an alternative way of analysis of food waste compost, the Near Infrared Reflectance Spectroscopy(NIRS) was used for the compost assessment because the technics has been known as non-detructive, cost-effective and rapid method. One hundred thirty six compost samples were collected from Incheon food waste compost factory at Namdong Indurial Complex. The samples were analyzed for nitrogen, organic matter (OM), ash, P, and K using Kjedahl, ignition method, and acid extraction with spectrophotometer, respectively. The samples were scanned using FOSS NIRSystem of Model 6500 scanning mono-chromator with wavelength from $400\~2,400nm$ at 2nm interval. Modified partial Least Squares(MPLS) was applied to develop the most reliable calibration model between NIR spectra and sample components such as nitrogen, ash, OM, P, and K. The regression was validated using validation set(n=30). Multiple correlation coefficient($R^2$) and standard error of prediction(SEP) for nitrogen, ash, organic matter, OM/N ratio, P and K were 0.87, 0.06, 0.72, 1.07, 0.68, 1.05, 0.89, 0.31, 0.77, 0.06, and 0.64, 0.07, respectively. The results of this experiment indicates that NIRS is reliable analytical method to assess some components of feed waste compost, also suggests that feasibility of NIRS can be Justified in case of various sample collection around the year.

  • PDF

Measurement of Surface Color and Fermentation Degree in Tea Products Using NIRS (근적외선 분광광도계를 이용한 차제품의 표면 색상 및 발효정도 측정)

  • Chun, Jong-Un
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • This study was conducted to measure tea surface colors using the visible bands ($400{\sim}700$ nm) with near-infrared spectroscopy (NIRS). The surface colors of 117 tea products were measured with a colorimeter. The $a^*/b^*$ (CIE color scale) or a/b (Hunter color scale) ratios in different tea products accounted for about 99.7% of the variation in fermentation degree (FD), indicating that the $a^*/b^*$ (a/b) ratio is a very useful trait for assessing fermentation degree. Also tea powders were scanned in the visible bands used with NIRS. Calibration equations for surface colors and fermentation degree were developed using the regression method of modified partial least-squares (MPLS) with internal cross validation. The equations had low SECV (standard errors of cross-validation), and high $R^2$ (coefficient of determination in calibration) values with $0.779{\sim}0.999$, indicating that the whole bands ($400{\sim}2500\;nm$) with NIRS could be used to rapidly measure traits related to surface color, fermentation degree and other chemical components in tea products with high precision and ease at a time.

Prediction from Linear Regression Equation for Nitrogen Content Measurement in Bentgrasses leaves Using Near Infrared Reflectance Spectroscopy (근적외선 분광분석기를 이용한 잔디 생체잎의 질소 함량 측정을 위한 검량식 개발)

  • Cha, Jung-Hoon;Kim, Kyung-Duck;Park, Dae-Sup
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.77-90
    • /
    • 2009
  • Near Infrared Reflectance Spectroscopy(NIRS) is a quick, accurate, and non-destructive method to measure multiple nutrient components in plant leaves. This study was to acquire a liner regression equation by evaluating the nutrient contents of 'CY2' creeping bentgrass rapidly and accurately using NIRS. In particular, nitrogen fertility is a primary element to keep maintaining good quality of turfgrass. Nitrogen, moisture, carbohydrate, and starch were assessed and analyzed from 'CY2' creeping bentgrass clippings. A linear regression equation was obtained from accessing NIRS values from NIR spectrophotometer(NIR system, Model XDS, XM-1100 series, FOSS, Sweden) programmed with WinISI III project manager v1.50e and ISIscan(R) (Infrasoft International) and calibrated with laboratory values via chemical analysis from an authorized institute. The equation was formulated as MPLS(modified partial least squares) analyzing laboratory values and mathematically pre-treated spectra. The accuracy of the acquired equation was confirmed with SEP(standard error of prediction), which indicated as correlation coefficient($r^2$) and prediction error of sample unacquainted, followed by the verification of model equation of real values and these monitoring results. As results of monitoring, $r^2$ of nitrogen, moisture, and carbohydrate in 'CY2' creeping bentgrass was 0.840, 0.904, and 0.944, respectively. SEP was 0.066, 1.868, and 0.601, respectively. After outlier treatment, $r^2$ was 0.892, 0.925, and 0.971, while SEP was 0.052, 1.577, and 0.394, respectively, which totally showed a high correlation. However, $r^2$ of starch was 0.464, which appeared a low correlation. Thereof, the verified equation appearing higher $r^2$ of nitrogen, moisture, and carbohydrate showed its higher accuracy of prediction model, which finally could be put into practical use for turf management system.

Quantitative Analysis of Carbohydrate, Protein, and Oil Contents of Korean Foods Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 국내 유통 식품 함유 탄수화물, 단백질 및 지방의 정량 분석)

  • Song, Lee-Seul;Kim, Young-Hak;Kim, Gi-Ppeum;Ahn, Kyung-Geun;Hwang, Young-Sun;Kang, In-Kyu;Yoon, Sung-Won;Lee, Junsoo;Shin, Ki-Yong;Lee, Woo-Young;Cho, Young Sook;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.3
    • /
    • pp.425-430
    • /
    • 2014
  • Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.

Evaluation of Chemical Composition in Reconstituted Tobacco Leaf using Near Infrared Spectroscopy (근적외선 분광분석법을 이용한 판상엽 화학성분 평가)

  • Han, Young-Rim;Han, Jungho;Lee, Ho-Geon;Jeh, Byong-Kwon;Kang, Kwang-Won;Lee, Ki-Yaul;Eo, Seong-Je
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Near InfraRed Spectroscopy(NIRS) is a quick and accurate analytical method to measure multiple components in tobacco manufacturing process. This study was carried out to develop calibration equation of near infrared spectroscopy for the prediction of the amount of chemical components and hot water solubles(HWS) of reconstituted tobacco leaf. Calibration samples of reconstituted tobacco leaf were collected from every lot produced during one year. The calibration equation was formulated as modified partial least square regression method (MPLS) by analyzing laboratory actual values and mathematically pre-treated spectra. The accuracy of the acquired equation was confirmed with the standard error of prediction(SEP) of chemical components in reconstituted tobacco leaf samples, indicated as coefficient of determination($R^2$) and prediction error of sample unacquainted, followed by the verification of model equation of laboratory actual values and these predicted results. As a result of monitoring, the standard error of prediction(SEP) were 0.25 % for total sugar, 0.03 % for nicotine, 0.03 % for chlorine, 0.16 % for nitrate, and 0.38 % for hot water solubles. The coefficient of determination($R^2$) were 0.98 for total sugar, 0.97 for nicotine, 0.96 for chlorine, 0.98 for nitrate and 0.92 for hot water solubles. Therefore, the NIRS calibration equation can be applicable and reliable for determination of chemical components of reconstituted tobacco leaf, and NIRS analytical method could be used as a rapid and accurate quality control method.

Non-destructive Method for Selection of Soybean Lines Contained High Protein and Oil by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.401-406
    • /
    • 2001
  • The applicability of non-destructive near infrared reflectance spectroscopic (NIRS) method was tested to determine the protein and oil contents of intact soybean [Glycine max (L.) Merr.] seeds. A total of 198 soybean calibration samples and 101 validation samples were used for NIRS equation development and validation, respectively. In the developed non-destructive NIRS equation for analysis of protein and oil contents, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing, and 1 point second smoothing) and 2, 1, 20, 10 math treatment conditions with Standard Normal Variate and Detrend (SNVD) scatter correction method and entire spectrum (400-2500 nm) by using Modified Partial Least Squares (MPLS) regression, respectively. Validation of these non-destructive NIRS equations showed very low bias (protein: 0.060%, oil: -0.017%) and standard error of prediction (SEP, protein: 0.568 %, oil : 0.451 %) as well as high coefficient of determination ($R^2$, protein: 0.927, oil: 0.906). Therefore, these non-destructive NIRS equations can be applicable and reliable for determination of protein and oil content of intact soybean seeds, and non-destructive NIRS method could be used as a mass screening technique for selection of high protein and oil soybean in breeding programs.

  • PDF

Determination of Color Value (L, a, b) in Green Tea Using Near-Infrared Reflectance Spectroscopy (근적외 분광분석법을 이용한 녹차의 색도 분석)

  • Lee, Min-Seuk;Choung, Myoung-Gun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.108-114
    • /
    • 2008
  • Near infrared spectroscopy (NIRS) is a rapid and accurate analytical method for determining the composition of agricultural products and feeds. The applicability of near infrared reflectance spectroscopic method was tested to determine the color value (L, a, b) of green tea. A total of 162 green tea calibration samples and 82 validation samples were used for NIRS equation development and validation, respectively. In the developed NIRS equation for analysis of the color value (L, a, b), the most accurate equation for L value was obtained at 2, 8, 6, 1 (2nd derivative, 8 nm gap, 6 points smoothing, and 1pointsecond smoothing), and for a, and b value were obtained at 1, 4, 4, 1 (1st derivative, 4 nm gap, 4points smoothing, and 1 point second smoothing) math treatment condition with SNVD (Standard Normal Variate and Detrend) scatter correction method and entire spectrum ($400{\sim}2,500\;nm$) by using MPLS (Modified Partial Least Squares) regression. Validation results of these NIRS equations showed very low bias (L: 0.005%, a: 0.003%, b: -0.013%) and standard error of prediction (SEP, L: 0.361%, a: 0.141%, b: 0.306%) as well as high coefficient of determination ($R^2$, L: 0.905, a: 0.986, b: 0.931). Therefore, these NIRS equations can be applicable and reliable for determination of color value (L, a, b) of green tea, and NIRS method could be used as a mass screening technique for breeding programs and quality control in the green tea industry.