• Title/Summary/Keyword: MOX

Search Result 122, Processing Time 0.036 seconds

Rapid Selection of Multiple Gene Integrant for the Production of Recombinant Hirudin in Hansenula polymorpha

  • Kim Hwa Young;Sohn Jung Hoon;Kim Chul Ho;Rao K. Jagannadha;Choi Eui Sung;Kim Myung Kuk;Rhee Sang Ki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • For the rapid selection of higher recombinant hirudin producing strain in a methylotrophic yeast Hansenula polymorpha, a multiple gene integration and dose-dependent selection vector, based on a telomere-associated ARS and a bacterial aminoglycoside 3-phosphotransferase (aph) gene, was adopted. Two hirudin expression cassettes (HV1 and HV2) were constructed using the MOX promoter of H. polymorpha and the mating factor $\alpha$ secretion signal of S. cerevisiae. Multiple integrants of a transforming vector containing hirudin expression cassettes were easily selected by using an antibiotic, G418. Hirudin expression level and integrated plasmid copy number of the tested transformants increased with increasing the concentration of G418 used for selection. The expression level of HV1 was consistently higher than that of HV2 under the similar conditions, suggesting that the gene context might be quite important for the high-level gene expression in H. polymorpha. The highest hirudin producing strain selected in this study produced over 96 mg/L of biologically active hirudin in a 500-mL flask and 165 mg/L in a 5-L fermentor.

  • PDF

VERIFICATION OF COSMOS CODE USING IN-PILE DATA OF RE-INSTRUMENTED MOX FUELS

  • Lee, Byung-Ho;Koo, Yang-Hyun;Cheon, Jin-Sik;Oh, Je-Yong;Joo, Hyung-Kook;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.242-242
    • /
    • 2002
  • Two MIMAS MaX fuel rods base-irradiated in a commercial PWR have been reinstrumented and irradiated at a test reactor. The fabrication data for two MOX roda are characterized together with base irradiation information. Both Rods were reinstrumented to be fitted with thermocouple to measure centerline temperature of fuel. One rod was equipped with pressure transducer for rod internal pressure whereas the other with cladding elongation detector. The post irradiation examinations for various items were performed to determine fuel and cladding in-pile behavior after base irradiation. By using well characterized fabrication and re-instrumentation data and power history, the fuel performance code, COSMOS, is verified with measured in-pile and PIE information. The COMaS code shows good agreement for the cladding oxidation and creep, and fission gas release when compared with PIE dad a after base irradiaton. Based on the re-instrumention information and power history measured in-pile, the COSMOS predicts re-instrumented in-pile thermal behaviour during power up-ramp and steady operation with acceptable accuracy. The rod internal pressure is also well simulated by COSMOS code. Therfore, with all the other verification by COSMOS code up to now, it can be concluded that COSMOS fuel performance code is applicable for the design and license for MaX fuel rods up to high burnup.

  • PDF

PLUTONIUM MANAGEMENT OPTIONS: LIABILITY OR RESOURCE

  • Bairiot, Hubert
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.9-20
    • /
    • 2008
  • Since plutonium accounts for 40-50% of the power produced by uranium fuels, spent fuel contains only residual plutonium. Management of this plutonium is one of the aspects influencing the choice of a fuel cycle back-end option: reprocessing, direct disposal or wait-and-see. Different grades and qualities of plutonium exist depending from their specific generation conditions; all are valuable fissile material. Safeguard authorities watch the inventories of civil plutonium, but access to those data is restricted. Independent evaluations have led to an estimated current inventory of 220t plutonium in total (spent fuel, separated civil plutonium and military plutonium). If used as MOX fuel, it would be sufficient to feed all the PWRs and BWRs worldwide during 7 years or to deploy a FBR park corresponding to 150% of today' s installed nuclear capacity worldwide, which could then be exploited for centuries with the current stockpile of depleted and spent uranium. The energy potential of plutonium deteriorates with storage time of spent fuel and of separated plutonium, due to the decay of $^{241}Pu$, the best fissile isotope, into americium, a neutron absorber. The loss of fissile value of plutonium is more pronounced for usage in LWRs than in FBR. However, keeping the current plutonium inventory for an expected future deployment of FBRs is counterproductive. Recycling plutonium reduce the required volume for final disposal in an underground repository and the cost of final disposal. However, the benefits of utilizing an energy resource and of reducing final disposal liabilities are not the only aspects that determine the choice of a back-end policy.

Verification of neutronics and thermal-hydraulic coupled system with pin-by-pin calculation for PWR core

  • Zhigang Li;Junjie Pan;Bangyang Xia;Shenglong Qiang;Wei Lu;Qing Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3213-3228
    • /
    • 2023
  • As an important part of the digital reactor, the pin-by-pin wise fine coupling calculation is a research hotspot in the field of nuclear engineering in recent years. It provides more precise and realistic simulation results for reactor design, operation and safety evaluation. CORCA-K a nodal code is redeveloped as a robust pin-by-pin wise neutronics and thermal-hydraulic coupled calculation code for pressurized water reactor (PWR) core. The nodal green's function method (NGFM) is used to solve the three-dimensional space-time neutron dynamics equation, and the single-phase single channel model and one-dimensional heat conduction model are used to solve the fluid field and fuel temperature field. The mesh scale of reactor core simulation is raised from the nodal-wise to the pin-wise. It is verified by two benchmarks: NEACRP 3D PWR and PWR MOX/UO2. The results show that: 1) the pin-by-pin wise coupling calculation system has good accuracy and can accurately simulate the key parameters in steady-state and transient coupling conditions, which is in good agreement with the reference results; 2) Compared with the nodal-wise coupling calculation, the pin-by-pin wise coupling calculation improves the fuel peak temperature, the range of power distribution is expanded, and the lower limit is reduced more.

Dynamic Modeling of a Partial Plutonium Recycling Scenario

  • Jeong, Chang-Joon;Ko, Won-Il
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.11a
    • /
    • pp.55-56
    • /
    • 2009
  • From the OT cycle analysis results, the nuclear power demand grows to ~70 GWe in 2150. The SF and TRU out-core inventories in 2150 will be 186500 t and 2100 t, respectively. The MOX fuel cycle gives 84% and 9% lower values for the SF and out-core TRU inventories, respectively.

  • PDF

A Multigroup Diffusion Nodal Scheme : Hybrid of AFEN and PEN Methods

  • Cho, Nam-Zin;Noh, Jae-Man
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.29-34
    • /
    • 1995
  • The good features of the analytic function expansion nodal (AFEN) method are utilized to develop a practical scheme jot the multigroup diffusion problems, in combination with the polynomial expansion nodal (PEN) method. The thermal group fluxes exhibiting strong gradients are solved by the AFEN method[1-6], while the fast group fluxes that are smoother than the thermal group fuzes are solved by the PEN method[7-9]. The scheme is applied to a MOX-fuel loaded core with good results.

  • PDF

PROSPECTIVE ON DEVELOPMENT OF NUCLEAR POWER AND THE ASSOCIATED FUEL CYCLE IN CHINA

  • Gu Zhongmao;Liu Changxin;Fu Manchang
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.156-164
    • /
    • 2005
  • The challenges China is facing in energy security are briefly discussed. Then, the development of nuclear power in China in the first half of 21 st century is envisioned, and it is expected that Generation-3 PWR nuclear power plants (NPPs) would be the leading units of nuclear power in the coming $30\~40$ years. As part of the nuclear power program, the R&D work on nuclear fuel cycle is generally proposed.

  • PDF

Effects of Hot Rolling on Microstructures and Magnetic Properties

  • Hong, Byung-Deug;Kim, Jae-Kwan;Cho, Kyung-Mox
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.111-114
    • /
    • 2006
  • We electroplated copper-cobalt thin films on a silicon substrate, which had 150 nm thick copper seed layer. The adhesion between the two metallic layers could be increased by utilizing a proper organic additive, pulse plating technique, and high temperature annealing. The thin films exhibited columnar growth of the deposits and enhanced adhesion. This is attributed to the grain growth mechanism introduced by the additive and annealing.