• Title/Summary/Keyword: MOSFET Transistor

Search Result 286, Processing Time 0.032 seconds

Temperature Effect on the Interface Trap in Silicon Nanowire Pseudo-MOSFETs

  • Nam, In-Cheol;Kim, Dae-Won;Heo, Geun;Najam, Syed Faraz;Hwang, Jong-Seung;Hwang, Seong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.487-487
    • /
    • 2013
  • According to shrinkage of transistor, interface traps have been recognized as a major factor which limits the process development in manufacturing industry. The traps occur through spontaneous generation process, and spread into the forbidden band. There is a large change of current though a few traps are existed at the Si-SiO2 interface. Moreover, the increased temperature largely affects to the leakage current due to the interface trap. For this reason, we made an effort to find out the relationship between temperature and interface trap. The subthreshold swing (SS) was investigated to confirm the correlation. The simulated results show that the sphere of influence of trap is enlarged according to increase in temperature. To investigate the relationship between thermal energy and surface potential, we extracted the average surface potential and thermal energy (kT) according to the temperature. Despite an error rate of 6.5%, change rates of both thermal energy and average surface potential resemble each other in many ways. This allows that SS is affected by the trap within the range of the thermal energy from the surface energy.

  • PDF

A New 1200V PT-IGBT with Protection Circuit employing the Lateral IGBT and Floating p-well Voltage Sensing Scheme (Floating P-well 전압 감지 방법과 수평형 절연 게이트 바이폴라 트랜지스터(LIGBT)를 이용한 새로운 1200V 절연 게이트 바이폴라 트랜지스터(IGBT)의 보호회로)

  • Cho, Kyu-Heon;Ji, In-Hwan;Han, Young-Hwan;Lee, Byung-Chul;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.99-100
    • /
    • 2006
  • 절연 게이트 바이폴라 트랜지스터 (Insuialed atc Bipolar Transistor : IGBT)는 높은 전류구동 능력과 높은 입력 임피던스 특성으로 인해 대전력 스위칭 소자로 널리 응용되고 있다. 특히, 대용량 모터 구동을 위해 응용되는 경우, 모터의 부하 특성상, 모터의 단락에 의한 단락 회로 (Short-circuit fault) 현상을 비롯한 클램핑 다이오드의 파손으로 인한 unclamped 유도성 부하 스위칭 (UIS) 상황에서 견딜 수 있도록 설계되어야 한다. 이를 위해, 이전 연구를 통해 Floating p-well을 600V급 IGBT에 도입함으로써 UIS 상황에서 IGBT가 견딜 수 있는 에너지(항복 에너지)륵 증가시키고 Floating p-weil 전압을 감지함으로써 단락 회로 상황에서 IGBT가 보호될 수 있도록 보호회로를 제안하고 검증하였다. 그러나 이 보호회로는 수평형 금속 산화막 반도체 전계 효과 트랜지스터 (Latcral MOSFET)로 제작됨으로써 보호회로 기능을 수행하기 위해서는 넓은 면적을 요구하였다. 또한, 정상적인 동작 상황에서 오류를 감지 (오류 감지: False detection)하는 동작으로 인해 추가적인 filter를 요구함으로써 보호회로 동작 속도를 감소시켰다. 이러한 단점을 해결하기 위해, 수평형 절연 게이트 바이폴라 트랜지스터 (Lateral IGBT : LIGBT)를 보호회로에 적용함으로써 LIGBT의 높은 전류 구동능력을 이용하여 기존 보호회로 면적의 30% 수준의 보호회로를 구현하였다. 또한, 구현된 보호회로는 오류 감지 현상을 제거함으로써 보호회로의 동작 속도를 개선하였다. 제안된 보호회로와 1200V급 IGBT는 7장의 마스크를 이용한 표준 수평형 IGBT 공정을 이용하여 제작되었으며, 특히, 전자빔 조사를 이하여 턴오프 속도를 개선함으로써 고속 스위칭에 적합하도록 최적화 되었다.

  • PDF

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

Evaluating efficiency of application the skin flash for left breast IMRT. (왼쪽 유방암 세기변조방사선 치료시 Skin Flash 적용에 대한 유용성 평가)

  • Lim, Kyoung Dal;Seo, Seok Jin;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.49-63
    • /
    • 2018
  • Purpose : The purpose of this study is investigating the changes of treatment plan and comparing skin dose with or without the skin flash. To investigate optimal applications of the skin flash, the changes of skin dose of each plans by various thicknesses of skin flash were measured and analyzed also. Methods and Material : Anthropomorphic phantom was scanned by CT for this study. The 2 fields hybrid IMRT and the 6 fields static IMRT were generated from the Eclipse (ver. 13.7.16, Varian, USA) RTP system. Additional plans were generated from each IMRT plans by changing skin flash thickness to 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm. MU and maximum doses were measured also. The treatment equipment was 6MV of VitalBeam (Varian Medical System, USA). Measuring device was a metal oxide semiconductor field-effect transistor(MOSFET). Measuring points of skin doses are upper (1), middle (2) and lower (3) positions from center of the left breast of the phantom. Other points of skin doses, artificially moved to medial and lateral sides by 0.5 cm, were also measured. Results : The reference value of 2F-hIMRT was 206.7 cGy at 1, 186.7 cGy at 2, and 222 cGy at 3, and reference values of 6F-sIMRT were measured at 192 cGy at 1, 213 cGy at 2, and 215 cGy at 3. In comparison with these reference values, the first measurement point in 2F-hIMRT was 261.3 cGy with a skin flash 2.0 cm and 2.5 cm, and the highest dose difference was 26.1 %diff. and 5.6 %diff, respectively. The third measurement point was 245.3 cGy and 10.5 %diff at the skin flash 2.5 cm. In the 6F-sIMRT, the highest dose difference was observed at 216.3 cGy and 12.7 %diff. when applying the skin flash 2.0 cm for the first measurement point and the dose difference was the largest at the application point of 2.0 cm, not the skin flash 2.5 cm for each measurement point. In cases of medial 0.5 cm shift points of 2F-hIMRT and 6F-sIMRT without skin flash, the measured value was -75.2 %diff. and -70.1 %diff. at 2F, At -14.8, -12.5, and -21.0 %diff. at the 1st, 2nd and 3rd measurement points, respectively. Generally, both treatment plans showed an increase in total MU, maximum dose and %diff as skin flash thickness increased, except for some results. The difference of skin dose using 0.5 cm thickness of skin flash was lowest lesser than 20 % in every conditions. Conclusion : Minimizing the thickness of skin flash by 0.5 cm is considered most ideal because it makes it possible to keep down MUs and lowering maximum doses. In addition, It was found that MUs, maximum doses and differences of skin doses did not increase infinitely as skin flash thickness increase by. If the error margin caused by PTV or other factors is lesser than 1.0 cm, It is considered that there will be many advantages in with the skin flash technique comparing without it.

  • PDF

New Ruthenium Complexes for Semiconductor Device Using Atomic Layer Deposition

  • Jung, Eun Ae;Han, Jeong Hwan;Park, Bo Keun;Jeon, Dong Ju;Kim, Chang Gyoun;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.363-363
    • /
    • 2014
  • Ruthenium (Ru) has attractive material properties due to its promising characteristics such as a low resistivity ($7.1{\mu}{\Omega}{\cdot}cm$ in the bulk), a high work function of 4.7 eV, and feasibility for the dry etch process. These properties make Ru films appropriate for various applications in the state-of-art semiconductor device technologies. Thus, it has been widely investigated as an electrode for capacitor in the dynamic random access memory (DRAM), a metal gate for metal-oxide semiconductor field effect transistor (MOSFET), and a seed layer for Cu metallization. Due to the continuous shrinkage of microelectronic devices, better deposition processes for Ru thin films are critically required with excellent step coverages in high aspect ratio (AR) structures. In these respects, atomic layer deposition (ALD) is a viable solution for preparing Ru thin films because it enables atomic-scale control of the film thickness with excellent conformality. A recent investigation reported that the nucleation of ALD-Ru film was enhanced considerably by using a zero-valent metallorganic precursor, compared to the utilization of precursors with higher metal valences. In this study, we will present our research results on the synthesis and characterization of novel ruthenium complexes. The ruthenium compounds were easy synthesized by the reaction of ruthenium halide with appropriate organic ligands in protic solvent, and characterized by NMR, elemental analysis and thermogravimetric analysis. The molecular structures of the complexes were studied by single crystal diffraction. ALD of Ru film was demonstrated using the new Ru metallorganic precursor and O2 as the Ru source and reactant, respectively, at the deposition temperatures of $300-350^{\circ}C$. Self-limited reaction behavior was observed as increasing Ru precursor and O2 pulse time, suggesting that newly developed Ru precursor is applicable for ALD process. Detailed discussions on the chemical and structural properties of Ru thin films as well as its growth behavior using new Ru precursor will be also presented.

  • PDF

Analysis Trap and Device Characteristic of Silicon-Al2O3-Nitride-Oxide-Silicon Memory Cell Transistors using Charge Pumping Method (Charge Pumping Method를 이용한 Silicon-Al2O3-Nitride-Oxide-Silicon Flash Memory Cell Transistor의 트랩과 소자)

  • Park, Sung-Soo;Choi, Won-Ho;Han, In-Shik;Na, Min-Gi;Lee, Ga-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.37-43
    • /
    • 2008
  • In this paper, the dependence of electrical characteristics of Silicon-$Al_2O_3$-Nitride-Oxide-Silicon (SANOS) memory cell transistors and program/erase (P/E) speed, reliability of memory device on interface trap between Si substrate and tunneling oxide and bulk trap in nitride layer were investigated using charge pumping method which has advantage of simple and versatile technique. We analyzed different SANOS memory devices that were fabricated by the identical processing in a single lot except the deposition method of the charge trapping layer, nitride. In the case of P/E speed, it was shown that P/E speed is slower in the SANOS cell transistors with larger capture cross section and interface trap density by charge blocking effect, which is confirmed by simulation results. However, the data retention characteristics show much less dependence on interface trap. The data retention was deteriorated as increasing P/E cycling number but not coincides with interface trap increasing tendency. This result once again confirmed that interface trap independence on data retention. And the result on different program method shows that HCI program method more degraded by locally trapping. So, we know as a result of experiment that analysis the SANOS Flash memory characteristic using charge pumping method reflect the device performance related to interface and bulk trap.