• Title/Summary/Keyword: MOLECULAR WEIGHT

Search Result 5,158, Processing Time 0.031 seconds

Preparation of Low Methoxyl Pectins by Pectinesterase in Tangerine Albedo and their Chemical, Physical and Gelling Properties (감귤류 과피내의 Pectinesterase 작용에 의한 Low Methoxyl Pectin 조제 및 특성에 관한 연구)

  • Yoon, Kyung Hee;Yoon, Sun;Lee, Mung Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 1983
  • The purpose of this study was to prepare low methoxyl pectins (LMPs) by pectinesterase (PE) using waste tangerine peels and to compare the chemical, physical and gelling properties of the prepared pectins with the commercial LMP. The LMPs were prepared by treating albedo with 0.25M $Na_2CO_3$ to activate the PE. PE was then inactivated by heating. The sample was centrifuged and the supernatant was collected. LMP was obtained as precipitate by adding alcohol to the collected supernatant. The amounts of extractible pectins in albedo were 12.71~12.98% on a dry weight basis. Methoxyl contents of LMPs prepared by treating albedo with PE at pH 7.5 for 10min, at pH 8.5 for 10min, 20min and 30min were 5.12%, 4.27%, 3.08%, 1.85% respectively, demonstrating that the methoxyl contents of the preparations decreased as the degree of treatment albedo with PE increased. The acetyl contents of the preparations ranged from 0.09% to 0.12%, the values of which do not interfere with gel formation. The anhydrouronic acid contents of the prepared pectins were in the range of 94.2%~94.8%. The values of viscosity and molecular weights of the prepared LMPs tent to decrease as the degree of PE action on albedo increased. The textural value of the prepared LMP gels determined by Consistometer, Ridgelimeter and Instron denonstrated that the excess treatment of albedo with PE significantly impaired the gelling properties of the preparations.

  • PDF

Effects of Attenuation and Scatter Corrections in Cat Brain PET Images Using microPET R4 Scanner (MicroPET R4 스캐너에서 획득한 고양이 뇌 PET 영상의 감쇠 및 산란보정 효과)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Jong-Jin;Lee, Byeong-Il;Park, Min-Hyun;Lee, Hyo-Jeong;Oh, Seung-Ha;Kim, Kyeong-Min;Cheon, Gi-Jeong;Lim, Sang-Moo;Chung, June-Key;Lee, Myung-Chul;Lee, Dong-Soo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.40-47
    • /
    • 2006
  • Purpose: The aim of this study was to examine the effects of attenuation correction (AC) and scatter correction (SC) on the quantification of PET count rates. Materials and Methods: To assess the effects of AC and SC $^{18}F$-FDG PET images of phantom and cat brain were acquired using microPET R4 scanner. Thirty-minute transmission images using $^{68}Ge$ source and emission images after injection of FDG were acquired. PET images were reconstructed using 2D OSEM. AC and SC were applied. Regional count rates were measured using ROIs drawn on cerebral cortex including frontal, parietal, and latral temporal lobes and deep gray matter including head of caudate nucleus, putamen and thalamus for pre- and post-AC and SC images. The count rates were then normalized with the injected dose per body weight. To assess the effects of AC, count ratio of "deep gray matter/cerebral cortex" was calculated. To assess the effects of SC, ROIs were also drawn on the gray matter (GM) and white matter (WM), and contrast between them ((GM-WM)/GM was measured. Results: After the AC, count ratio of "deep gray matter/cerebral cortex" was increased by $17{\pm}7%$. After the SC, contrast was also increased by $12{\pm}3%$. Conclusion: Relative count of deep gray matter and contrast between gray and white matters were increased after AC and SC, suggesting that the AC would be critical for the quantitative analysis of cat brain PET data.

Production and Characterization of Extracellular Polysaccharide Produced by Pseudomonas sp. GP32 (Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성)

  • Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1027-1035
    • /
    • 2015
  • A strain GP32 which produces a highly viscous extracellular polysaccharide was conducted with soil samples and identified as Pseudomonas species. The culture flask conditions for the production of extracellular polysaccharide by Pseudomonas sp. GP32 were investigated. The most suitable carbon and nitrogen source for extracellular polysaccharide production were galactose and (NH4)2SO4. The optimum carbon/nitrogen ratio for the production of extracellular polysaccharide was around 50. The optimum pH and temperature for extracellular polysaccharide production was 7.5 and 32℃, respectively. In batch fermentation using a jar fermentor, the highest extracellular polysaccharide content (15.7 g/l) was obtained after 70 hr of cultivation. The extracellular polysaccharide produced by Pseudomonas sp. GP32 (designated Biopol32) was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography. Biopol32, which has an estimated molecular weight of over 3×107 datons, is a novel polysaccharide derived from sugar components consisting of galactose, glucose, gulcouronic acid and galactouronic acid in an approximate molar ratio of 1.85 : 3.24 : 1.00 : 1.42. The solution of Biopol32 showed non-Newtonian characteristics. The viscosity of Biopol32 exhibited appeared to be higher at all concentration compared to that of zooglan from Zoogloea ramigera. An analysis of the flocculating efficiency of Biopol32 in industry wastewater (food, textile, and paper wastewater) revealed chemical oxygen demand (COD) reduction rates 58.4-67.3% and suspended solid (SS) removal rates 82.6-91.3%. Based on these results, Biopol32 is a possible candidate for industrial applications such as wastewater treatment.

Biochemical Characterization of Recombinant Equine Chorionic Gonadotropin (rec-eCG), Using CHO Cells and PathHunter Parental Cells Expressing Equine Luteinizing Hormone/Chorionic Gonadotropin Receptors (eLH/CGR) (말의 LH/CGR를 발현하는 CHO 세포와 PathHunter Parental 세포에서 유전자 재조합 eCGβ/α의 생화학적 특성)

  • Lee, So-Yun;Byambaragchaa, Munkhzaya;Kim, Jeong-Soo;Seong, Hun-Ki;Kang, Myung-Hwa;Min, Kwan-Sik
    • Journal of Life Science
    • /
    • v.27 no.8
    • /
    • pp.864-872
    • /
    • 2017
  • Equine chorionic gonadotropin (eCG) consists of highly glycosylated ${\alpha}-$ and ${\beta}-subunits$ and is a unique member of the gonadotropin family, because it elicits the response characteristics of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in species other than the horse. To directly assess the biological function of $rec-eCG{\beta}/{\alpha}$, we constructed mammalian expressing vectors of equine luteinizing hormone/chorionic gonadotropin receptors (eLH/CGR). The activity of $rec-eCG{\beta}/{\alpha}$ in vitro assayed in transient transfected CHO-K1 cells and in stably transfected PathHunter Parental cells with eLH/CGR was investigated. $rec-eCG{\beta}/{\alpha}$ was efficiently secreted in the CHO-K1 suspension cell media, and the quantity detected was about 200 mIU/ml from 1 to 7 days after transfection. In the western blot analysis, the $rec-eCG{\beta}/{\alpha}$ protein was broadly identified to be about 40~45 kDa molecular weight. The cAMP stimulation in CHO-K1 cells expressing eLH/CGR was determined to evaluate the activity of $rec-eCG{\beta}/{\alpha}$. The cAMP concentration increased in direct proportion to the concentration of the $rec-eCG{\beta}/{\alpha}$. The $EC_{50}$ value in the transient transfected CHO-K1 cells was $8.1{\pm}6.5ng$. The stable cell lines of eLH/CGR were established in the PathHunter Parental cells expressing ${\beta}-arrestin$. We found that $rec-eCG{\beta}/{\alpha}$ had full LH activity in the PathHunter Parental cells expressing eLH/CGR. The $EC_{50}$ value in transient and stable cells was $5.0{\pm}4.7ng/ml$ and $4.5{\pm}5.2ng/ml$, respectively. These results suggest that $rec-eCG{\beta}/{\alpha}$ has a biological activity in a cell expressing eLH/CGR. These stable cells expressed in PathHunter Parental cells could be useful for elucidating the functional mechanisms of deglycosylated $rec-eCG{\beta}/{\alpha}$ mutants.

Purification of Complement System-Activating Polysaccharide from Hot Water Extract of Young Stems of Cinnamomum cassia Blume (계지(桂枝) 열수추출물로부터 보체계 활성화 다당의 정제)

  • Kweon, Mee-Hyang;An, Hyun-Jung;Shin, Kwang-Soon;Na, Gyeong-Su;Sung, Ha-Chin;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.1-8
    • /
    • 1997
  • A complement system-activating (anti-complementary) polysaccharide was purified from the hot water extract of young stems of Cinnamomum cassia Blume. Crude polysaccharide fraction (CC-1) was prepared from the hot water extract of the young stems followed by methanol-reflux, precipitation with ethanol, dialysis, and lyophilization. The anti-complementary activity of CC-1 was decreased greatly by periodate oxidation, but was not changed by pronase digestion. These suggest that carbohydrate moiety may be related to the activation of complement system. According to its ionic strength CC-1 was fractionated first using cetavlon to give 4 fractions, CC-2, 3, 4 and 5. Among them CC-2 fraction was found to retain the highest activity and yield. CC-2 was separated to an unabsorbed neutral sugar portion (CC-2-I) and seven absorbed acidic sugar fractions $(CC-2-II{\rightarrow}CC-2-VIII)$ on DEAE-Toyopearl 650C (Cl-). CC-2-III showing higher anti-complementary activity and yield than those of other fractions, was further purified on the gel permeation of Sephadex G-100 and Sepharose CL-6B to CC-2-IIIa-3. CC-2-IIIa-3 was determined to have a homogeneity hy GPC (Sepharose CL-6B) and HPLC. Gel chromatography using standard dextrans gave a value of $2.4{\times}10^5$ for the molecular weight. The purified polysaccharide, CC-2-IIIa-3 consisted of arabinose, xylose, glucose, galactose, galacturonic acid and glucuronic acid in a molar ratio of 5.56 : 3.77 : 1.87 : 1.00 : 5.12 : 3.13 and contained no nitrogen.

  • PDF

Studies on the Development of Food Resources from Waste Seeds -I. Chemical Composition of Grape Seed- (폐엽종실(廢棄種實)의 식량자원화(貪糧資源化)에 관(關)하여 -제(第) 1 보(報) : 포도씨의 화학적(化學的) 조성(組成)-)

  • Yoon, Hyung-Sik;Kwon, Joong-Ho;Hwang, Joo-Ho;Choi, Jae-Chun;Shin, Dae-Hyn
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.250-256
    • /
    • 1982
  • A series of studies were conducted to find out the possibility of utilizing grape seed as resources of food fats and proteins, and the results of the studies are as follows: The grape seed contained 25.1%, of crude fat and 12.0% of crude protein. The lipid, fractions obtained by silicic acid column chromatography were mainly composed of about 95.5% neutral lipid, whereas compound lipid was only 4.5% level. Among the neutral lipid by thin layer chromatography, triglyceride was 91.89%, sterol ester, sterol, diglyceride and free fatty acid were 3.24%, 2.87%, 1.20% and 0.80%, respectively The predominant fatty acids of total and neutral lipids were linoleic acid $(69.72{\sim}71.72%)$ and oleic acid $18.09{\sim}19.46%)$, but those of glycolipid and phospolipid were linoleic acid $(31.49{\sim}38.18%)$, oleic acid $(20.20{\sim}35.27%)$ and palmitic acid $(26.80{\sim}39.98%)$. The major fatty acids of triglyceride separated from neutral lipid were oleic acid (43.08%), linoleic acid (38.42%) and palmitic acid (11.60%). The salt soluble protein of grape seed was highly dispersible in 0.02M sodium phosphate buffer containing about 1.0M $MgSO_4$, and the extractability of seed protein was 31%. Glutamic acid was the major amino acid in salt soluble protein, followed by arginine and aspartic acid. The electrophoretic analysis showed 3 bands in grape seed protein, and the collection rate of the main protein fraction purified by Sephadex G-100 and G-200 was 82%. Glutamic acid, aspartic acid and arginine were the major amino acids of the main grape seed protein. The molecular weight for the main protein of the grape seed was estimated to be 81,000.

  • PDF

Purification and Characterization of $\beta$-Cyclodextrin Glucanotransferase Excreted by Bacillus firmus var. aikalophilus. (호알칼리성 Bacillus firmus가 생산하는 $\beta$-Cyclodextrin Glucanotransferase의 정제 및 효소반응 특성)

  • Shin, Hyun-Dong;Kim, Chan;Lee, Yong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.4
    • /
    • pp.323-330
    • /
    • 1998
  • Cyclodextrin glucanotransferase (CGTase) was purified from the culture broth of the Bacillus firmus var. alkalophilus, using ultrafiltration, starch adsorption/desorption, ion-exchange chromatography on DEAE-cellulose and gel filtration on Sephacryl HR-100. The molecular weight of the purified enzyme was determined as 77,000 by SDS-PAGE. The optimum pH and temperature for the CD synthesis were 6.0 and 5$0^{\circ}C$, respectively. The activity of this enzyme was stably kept at the range of pH 6.0~9.5 and up to 5$0^{\circ}C$. However, in the presence of $Ca^{2+}$, the optimum temperature for CD synthesis was shifted 55~6$0^{\circ}C$ and this enzyme was stable up to 6$0^{\circ}C$ because of the stabilizing effect of $Ca^{2+}$. The purified CGTase produced CDs with high conversion yields of 45~51% from sweet potato starch, com starch and amylopectin as substrate, especially, and the product ratio of $\beta$-CD to ${\gamma}$-CD was obtained at range of from 5.8:1 to 8.4:1 according to the kind of substrate. The purified enzyme produced mainly $\beta$-CD without accumulation of $\alpha$-CD during enzyme reaction using various starches as the substrate, indicating that the purified enzyme is the typical $\beta$-CGTase. The purified CGTase produced 25 g/l of CDs from 5.0% (w/v) liquefied com starch and the conversion yield of CDs was 50%, and the content of $\beta$-CD was 84% of total CDs after 8 hours under the optimum reaction condition.ion.

  • PDF

Antimicrobial Drug Resistance and R-plasmid of Salmonella species (Salmonella 균속의 항균제 내성 및 R-plasmid)

  • Lee Myung-Won;Chung Tae-Wha;Lee Yun-Tai;Kang Jeung-bok
    • Journal of environmental and Sanitary engineering
    • /
    • v.3 no.2 s.5
    • /
    • pp.23-41
    • /
    • 1988
  • Two hundred and eighty-six strains of Salmonella species were isolated from the twelve provincial institutes of health and 19 general hospitals of urban and rural areas in Korea from January to December in 1986. The antimicrobial susceptibility test of these cultures was done by the method of agar diluton. The resistance frequency of Salmonella cultures was $29.7\%$. Among these resistant cultures, the most provalent resistance pattern of Salmonella was ampicillin, carbenicillin, chloramphenicol, tetracycline, streptomycin, and its resistance frequency was $15\%$. In plasmid profile of resistance strains, average number of plasmid harboring in Salmonella was 1-4 and molecular weight of plasmid ranged 1.6 to 70 megadalton (Md.). Plasmid pattern of strains isolated from Seoul and Kang-won showed the same or similar profiles. Plasmid pattern was identical in the same resistance pattern.

  • PDF

Removal of Methyl tert-Butyl Ether (MTBE) by Modified Fenton Process for in-situ Remediation (Methyl tert-Butyl Ether(MTBE)의 in-situ Remediation을 위한 Modified Fenton Process에 관한 연구)

  • Chung, Young-Wook;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.2
    • /
    • pp.27-36
    • /
    • 2007
  • A recent study showed that MTBE can be degraded by Fenton's Reagent (FR). The treatment of MTBE with FR, however, has a definite limitation of extremely low pH requirement (optimum pH $3{\sim}4$) that makes the process impracticable under neutral pH condition on which the ferrous ion precipitate forming salt with hydroxyl anion, which result in the diminishment of the Fenton reaction and incompatible with biological treatment. Consequently, this process using only FR is not suitable for in-situ remediation of MTBE. In order to overcome this limitation, modified Fenton process using NTA, oxalate, and acetate as chelating reagents was introduced into this study. Modified Fenton reaction, available at near neutral pH, has been researched for the purpose of obtaining high performance of oxidation efficiency with stabilized ferrous or ferric ion by chelating agent. In the MTBE degradation experiment with modified Fenton reaction, it was observed that this reaction was influenced by some factors such as concentrations of ferric ion, hydrogen peroxide, and each chelating agent and pH. Six potential chelators including oxalate, succinate, acetate, citrate, NTA, and EDTA were tested to identify an appropriate chelator. Among them, oxalate, acetate, and NTA were selected based on their remediation efficiency and biodegradability of each chelator. Using NTA, the best result was obtained, showing more than 99.9% of MTBE degradation after 30 min at pH 7; the initial concentration of hydrogen peroxide, NTA, and ferric ion were 1470 mM, 6 mM, and 2 mM, respectively. Under the same experimental condition, the removal of MTBE using oxalate and acetate were 91.3% and 75.8%, respectively. Optimum concentration of iron ion were 3 mM using oxalate which showed the greatest removal efficiency. In case of acetate, $[MTBE]_0$ decreased gradually when concentration of iron ion increased above 5 mM. In this research, it was showed that modified Fenton reaction is proper for in-situ remediation of MTBE with great efficiency and the application of chelatimg agents, such as NTA, was able to make the ferric ion stable even at near neutral pH. In consequence, the outcomes of this study clearly showed that the modified Fenton process successfully coped with the limitation of the low pH requirement. Furthermore, the introduction of low molecular weight organic acids makes the process more available since these compounds have distinguishable biodegradability and it may be able to use natural iron mineral as catalyst for in situ remediation, so as to produce hydroxyl radical without the additional injection of ferric ion.

Phytotoxicity of Endophytic Fungi and Characterization of a Phytotoxin Isolated from Gliocladium catenulatum from Pinus densiflora (식물내생곰팡이의 제초활성 검정 및 소나무에서 분리한 Gliocladium catenulatum이 생산하는 제초활성 물질의 특성 규명)

  • Choi, Gyung-Ja;Park, Joong-Hyeop;Kim, Heung-Tae;Lee, Seon-Woo;Choi, Jung-Sup;Hong, Kyung-Sik;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Mycology
    • /
    • v.32 no.1
    • /
    • pp.8-15
    • /
    • 2004
  • This study was conducted to discover new phytotoxins which may be used as lead molecules for the development of new herbicides. A total of 187 endophytic fungi were isolated from 11 plant species, which were collected from 8 locations in Korea. Their herbicidal activities were screened in vivo by herbicidal and duckweed bioassays after they were cultured in potato dextrose broth and rice solid media. Both fermentation broth and solid culture extract of Gliocladium catenulatum F0006 isolated from red pine (Pinus densiflora) showed 70% herbicidal activity only against cocklebur (Xanthium strumarium) out of the 10 weeds tested. Solid culture extract of F0034 isolated from arrowroot (Pueraria thunbergiana) exhibited 20 to 100% herbicidal activities against all of the weeds. Especially, shattercane (Sorghum bicolor), barnyardgrass (Echinochloa crus-galli), large crabgrass (Digitaria sanguinalis), and fall pauicum (Panicum dichtomiflorum) were sensitive to the solid culture extract of F0034. In addition, solid culture extract of F0043 isolated from red pine displayed 20% to 70% herbicidal activities only against 5 grass species, but not against 5 broad-leaf plant species. On the other hand, as the results of duckweed assay, 8 fermentation broths showed 100% growth inhibitory activity at concentrations less than 5.0% of culture supernatants and 12 solid cultures had a potent inhibitory activity against duckweed growth. A toxic metabolite was purified from the solid cultures of G. catenulatum F0006 by repeated column chromatography and bioassay. It caused a phytotoxic syndrome only on cocklebur out of the 10 weeds tested; it completely killed cocklebur seedlings at $500\;{\mu}g/ml$ and showed 85% herbicidal activity against cocklebur at $100\;{\mu}g/ml$. The molecular weight of the toxic metabolite is 238 daltons and its structure determination is underway.