• Title/Summary/Keyword: MOLECULAR WEIGHT

Search Result 5,165, Processing Time 0.028 seconds

Angiotensin I Converting Enzyme Inhibitory Activity of Hot-Water Extract and Enzymatic Hydrolysate of Fresh Water Fish (담수어 열수추출물 및 효소가수분해물의 Angiotensin I 전환효소 저해작용)

  • 김태진;윤호동;이두석;장영순;서상복;염동민
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.5
    • /
    • pp.871-877
    • /
    • 1996
  • Hot-water extract and enzymatic hydrolysate prepared from fresh water fish such as carp, snakehead, eel and israeli cart were tested for inhibitory activity against Angiotensin I converting enzyme(ACE). ACE inhibitory activity of enzymatic hydrolysate was higher than that of hot-water extract, and was the highest in enzymatic hydrolysate of carp among the tested samples. ACE inhibitory activity of 70% ethanol soluble fraction was higher than that of precipitated fraction, the highest in enzymatic hydrolysate of carp. Molecular weight of active fraction was about 1,400 in hot-water extract and slightly above in enzymatic hydrolysate. Amino acid of active fraction of hot-water extract was abundant in glycine, alanine, leucine and proline, whereas amino acids of aspartic acid, glutamic acid, glycine, alanine, valine, leucine and proline were abundant in enzymatic hydrolysate. $IC_{50}$/(amounts of inhibitors need for 50% inhibition) of hot-water extract was the range of 50.3~56.9$\mu\textrm{g}$, those of enzymatic hydrolysate 42.6~57.7$\mu\textrm{g}$.

  • PDF

Characteristics of ${\beta}-Galactosidase$ Produced from Lactobacillus acidophilus (Lactobacillus acidophilus가 생성하는 ${\beta}-Galactosidase$의 성질)

  • Kim, Soon-Dong;Jang, Kyung-Sook;Oh, Young-Ae;Kim, Mee-Jung;Kang, Meung-Su;Lee, Meung-Suk;Kim, Mee-Hyang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.1
    • /
    • pp.54-59
    • /
    • 1992
  • The characteristics of endogenous and exogenous ${\beta}-galactosidase\;({\beta}-Galase)$ produced from L. acidophilus were investigated as one of the serial studies on the fermentation of Chinese cabbage kimchi using L. acidophilus. Apparent molecular weight of endogenous and exogenous of the ${\beta}-Galase$ were investigated to be 550,000 and 740,000 daltons by the method of gel filtration and Km values of the both enzymes were 1.67mg/ml, 1.33mg/ml and $V_{max}$ were $8.5\;{\mu}\;mol/mg/30min.$, $2.65\;{\mu}\;mol/ml/30min.$, respectively. The optimum pH of the enzymes were 7 and 8, respectively. The optimum temperatures and salt concentrations of the both enzyme were the same and appeared to $30^{\circ}C$and$4{\sim}5%$, respectively. The activities of the endogenous and exogenous ${\beta}-Galase$ were decreased by increasing of temperature from $60^{\circ}C$to$90^{\circ}C$ and the decreasing rate of the enzyme activities on the processing of the heating times showed high at first 2 minutes of heating.

  • PDF

Purification and Some Characteristics of the Proteolytic Enzyme in Fruitbody of Neungee [Sarcodon aspratus (Berk.) S. Ito] (능이 [Sarcodon aspratus (Berk.) S. Ito]중 단백질(蛋白質) 가수분해(加水分解) 효소(酵素)의 정제(精製) 및 성질(性質)에 관하여)

  • Lee, Tae-Kyoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.15 no.3
    • /
    • pp.276-285
    • /
    • 1986
  • This study was undertaken to investigate the characteristics of the proteolytic enzyme extracted from Neungee mushroom [Sarcodon aspratus (Berk.) S. Ito]. The enzyme was purified by using Tris-acryl CM-cellulose ion exchange, gel filtration on Ultrogel AcA 54, Hydroxy apatite column chromatography and preparative isoelectic focusing. The specific activity of the purified enzyme increased 8 times as compared with that of the crude enzyme. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE). The optimum pH was 10.1, indicating the enzyme to be alkaline protease and the optimum temperature was $57^{\circ}C$. The enzyme was stable at temperatures lower than $50^{\circ}C$and at pH values ranging from 4.0 to 10.8. However, the enzyme activity decreased by 26 and 65% at 60 and $65^{\circ}C$, respectively, when incubated for 30 minutes. The enzyme activity was activated by $Mn^{++}$ and inhibited by $Cu^{++}$ and $Hg^{++}$. The enzyme was consisted of monomer and its molecular weight estimated to be about 30,100 when determined by sodium dodecyl sulfate PAGE. Isoelectric point of the enzyme was determined to be 9.80.

  • PDF

Anti-Inflammatory Activity of Austroinulin from Stevia rebaudiana in LPS-induced RAW264.7 Cells (스테비아로부터 분리한 Austroinulin의 RAW264.7 세포에 대한 항염증 효과)

  • Byun, Myung-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.456-461
    • /
    • 2012
  • The leaves of $Stevia$ $rebaudiana$ are well-known in Japan, Korea, and China as a natural sweetener. Medicinal uses of this plant originated in Paraguay and Brazil in the form of aqueous decoctions of the leaves used as a contraceptive agent and for the treatment of hyperglycemia. In the present study, the antioxidant, anti-hypertension, and anti-inflammatory activities of $S.$ $rebaudiana$ extracts are investigated for their use in food. The biologically-active compound was isolated and purified from $S.$ $rebaudiana$. The isolated compound was identified as austroinulin ($C_{20}H_{34}O_3$; molecular weight 322) by mass, IR spectrophotometry, 1D, and 2D-NMR. Austroinulin was characterized as a diterpenoid possessing a 3-methylpenta-2,4-dienyl at C-9. When subjected to an inflammatory mediator inhibitory assay from lipopolysaccharide (LPS)-activated macrophages, the austroinulin inhibited the enhanced production of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) expression (10 ${\mu}g$/mL=67.9 and 45.1%, respectively). This was significant and dose-dependent. The results suggest that austroinulin from $S.$ $rebaudiana$ inhibited the NO and iNOS in RAW 264.7 cells.

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Extraction of Carbohydrates and Minerals from Laminaria Using Organic Acid (다시마 뿌리로부터 유기산을 이용한 다당과 미네랄 추출)

  • Chun, Ji Yeon;Han, Cha Seong;Lee, Jung Shik;Kim, Young Suk;Park, Kwon Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.238-243
    • /
    • 2012
  • Laminaria roots have not been practically used in Korea. In this study, the extraction process of carbohydrates and minerals from Laminaria roots was investigated and the properties of extracted components were measured. Hydrochloric acid generally used in carbohydrate extraction from seaweeds in order to obtain high extraction yield. But in this work, to utilize extracted components as a functional food material, organic acids such as citric acid were used. Organic acid as extraction solvent has low extraction yield compared to strong acids. Therefore optimum condition for maximum yield was investigated in carbohydrate extraction from Laminaria roots using organic acid. We measured the extraction yields of carbohydrate with variation of extraction temperature, extraction time, concentration of organic acid and particle size of samples. The extraction yield increased as the particle size decreased and temperature became high. The extraction yield was 19.0 wt% after 4.0 hours extraction with 0.2 wt% citric acid at $100^{\circ}C$. Potassium concentration was high compared other minerals in extraction solution, that is, the ratio of K/Na was about 3.0. Fucoidan from Laminaria roots had same carbohydrate composition and lower molecular weight compared that of Undaria pinnatifida.

The Effects of Zeolite-Type Catalysts on the Pyrolysis Reaction of PP to Produce Fuel-oil (폴리프로필렌 수지 이용 연료유 생성을 위한 열분해 반응에서 제올라이트계 촉매의 영향)

  • Bak, Young-Cheol;Choi, Joo-Hong;Oh, Se-Hui
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.442-448
    • /
    • 2012
  • The effects of zeolite-type catalysts addition on the thermal decomposition of the PP resin have been studied in a thermal analyzer, a Pyrolyser GC-mass, and a small batch reactor. The zeolite type catalysts tested were natural zeolite, used FCC catalyst, and ZSM-5. As the results of TGA experiments, the pyrolysis starting temperature for PP varied in the range of $330{\sim}360^{\circ}C$ according to the heating rate. Addition of the zeolite type catalysts in the PP resin increased the pyrolysis rate in the order of used FCC catalyst> natural zeolite> ZSM-5 > PP resin. Adding the used FCC catalyst in the PP reduced most effectively the pyrolysis finishing temperature. In the PY-G.C. mass experiments, addition of zeolite type catalysts decreased the molecular weight of pyrolyzed product. In the batch system experiments, the mixing of used FCC catalyst enhanced best the initial yield of fuel oil, but the final yield of fuel oil was 2% higher in the case of mixing of natural zeolite. Also in the carbon number analysis, used FCC catalyst was the most useful one in this experiments for fuel oil.

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

The Development of a Natural Seasoning Using the Enzymatic Hydrolysate of Fish Skin (어피의 효소적 가수분해물을 이용한 천연조미료의 개발)

  • 김세권;양현필이응호
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.327-336
    • /
    • 1991
  • A study on the optimum hydrolysis conditions of fish skin through the aid of enzymes and the development of a natural seasoning using the hydrolysate has been carried out for the effective utilization of fish skin. Using the "pH-drop" techniques the collagenase and pronase were identified as most suitable for this purpose. The $K_m$ and $V_{max}$ values of pronase were 1.82 mgN/ml and 0.06 mgN/mL/min, respectively. The hydrolysis conditions of the cod skin for the pronase were as follows: reaction temperature, $50^{\circ}C$; reaction time, 3hrs; pH 6; enzyme concentration, 0.03%. The degree of hydrolysis at these conditions was 76.8%. But after hydrolyzing cod skin with collagenase for 1hr, when the pronase was treated, the degree of hydrolysis was 83.13%. The molecular weight of the hydrolysate was 8,000 daltons. Among the amino acids in the hydrolysate, glycine(27.95%), glutamic acid(10.94%), proline(7.39%), aspartic acid(9.47%) and serine(7.39%) were responsible for 64.23% of the total amino acids. But valine, methionine, isoleucine, leucine, phenylalanine and histidine having a bitter taste were only 13.05%. From the results of the sensory evaluation, the imitation sauce which was made of 20% fermented soy sauce prepared from the hydrolysate was at least similar to the traditional soybean sauce in product quality. The complex seasoning containing 31.7% of the hydrolysate was nearly equal to complex seasonings on the market, too.

  • PDF

Research trends, applications, and domestic research promotion stratigies of metabolomics (대사체학의 연구 동향, 응용 및 국내 연구 활성화 방안)

  • Kim, So-Hyun;Yang, Seung-Ok;Kim, Kyoung-Heon;Kim, Young-Suk;Liu, Kwang-Hyeon;Yoon, Young-Ran;Lee, Dong-Ho;Lee, Choong-Hwan;Hwang, Geum-Sook;Chung, Myeon-Woo;Choi, Ki-Hwan;Choi, Hyung-Kyoon
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.113-121
    • /
    • 2009
  • As one of the new areas of 'omics' technology, there is increasing interest in metabolomics, which involves the analysis of low-molecular-weight compounds in cells, tissues, and biofluids, and considers interactions within various organisms and reactions of external chemicals with those organisms. However, metabolomics research is still at a fundamental stage in Korea. Therefore, the purpose of this study was to establish a strategic long-term plan to revitalize the national metabolomics approach and obtain the elementary data necessary to determine a policy for effectively supporting metabolomics research. These investigations clarified the state of metabolomics study both in Korea and internationally, from which we attempted to find the potentiality and fields where a metabolomics approach would be applicable, such as in medical science. We also discuss strategies for developing metabolomics research. This study revealed that promoting metabolomics in Korea requires cooperation with metabolomics researchers, acquisition of advanced technology, capital investment in metabolomics approach, establishment of metabolome database, and education of metabolome analysis experts. This would reduce the gap between the national and international levels of metabolomics research, with the resulting developments in metabolomics having the potential to greatly contribute to promoting biotechnology in Korea.