• Title/Summary/Keyword: MODIS Satellite Imagery

Search Result 54, Processing Time 0.027 seconds

The Change Detection of SST of Saemangeum Coastal Area using Landsat and MODIS (Landsat TM과 MODIS 영상을 이용한 새만금해역 표층수온 변화 탐지)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.199-205
    • /
    • 2011
  • The Saemangeum embankment construction have changed the flowing on the topography of the coastal marine environment. However, the variety of ecological factors are changing from outside of Saemangeum embankment area. The ecosystem of various marine organisms have led to changes by sea surface temperature. The aim of this study is to monitoring of sea surface temperature(SST) changes were measured by using thermal infrared satellite imagery, MODIS and Landsat. The MODIS data have the high temporal resolution and Landsat satellite data with high spatial resolution was used for time series monitoring. The extracted informations from sea surface temperature changes were compared with the dyke to allow them inside and outside of Saemangeum embankment. The spatial extent of the spread of sea water were analyzed by SST using MODIS and Landsat thermal channel data. The difference of sea surface temperature between inland and offshore waters of Saemangeum embankment have changed by seasonal flow and residence time of sea water in dyke.

The Analysis of Sea Surface Temperature Distribution Using Atmospheric Corrected Landsat Imagery (대기보정된 Landsat 위성영상을 이용한 해수온도 분석)

  • Kim, Gi-Hong;Hong, Sung-Chang;Youn, Jun-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • There are many problems in monitering environmental change around of nuclear power station, because interesting area is coastal and relatively large. The ground resolution of Landsat ETM+ imagery is high (30 m), but this imagery does not have enough informations for conducting atmospheric correction in evaluating sea surface temperatures. On the other hand, while it is possible to conduct atmospheric correction using MODIS imagery with it's two infrared bands, it's resolution is relatively low (1 km). Therefore, atmospheric corrected high resolution temperature information can be obtained from these two satellite images. In this study, digital numbers of Landsat ETM+ data in interesting area are georeferenced, converted to effective temperatures based on radiance value, and then the atmospheric correction is conducted using MODIS data. As a result, about $3.5^{\circ}C$ temperature differences were detected in comparing sea surface temperature of the surrounding area of Uljin nuclear power station with it of the same area located 5km far east.

The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea

  • Cha, Su-Young;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.483-491
    • /
    • 2007
  • One of the major obstacles to classify and validate Land Cover maps is the high cost of acquiring reference data. In case of inaccessible areas such as North Korea, the high resolution satellite imagery may be used for reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird high resolution imagery of North Korea that can be obtained from Google Earth data via internet for reference data of land cover classification. Monthly MODIS NDVI data of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes - coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water, and built-up areas - by careful use of reference data obtained through visual interpretation of the high resolution imagery. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional reference data collection on the site where the accessibility is severely limited.

APPLICATION OF REMOTE SENSING IMAGERY ON THE ESTIMATE OF EVAPOTRANSPIRATION OVER PADDY FIELD

  • Chang, Tzu-Yin;Chien, Tzu-Chieh;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.752-755
    • /
    • 2006
  • Evaportranspiration is an important factor in hydrology cycle. Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportranspiration over a regional area. With the advent of improved remote sensing technology, it becomes a surface parameter of research interest in the field of remote sensing. Airborne and satellite imagery are utilized in this study. The high resolution airborne images include visible, near infrared, and thermal infrared bands and the satellite images are acquired by MODIS. Surface heat fluxes such as latent heat flux and sensible heat flux are estimate by using airborne and satellite images with surface meteorological measurements. We develop a new method to estimate the evaportranspiration over the rice paddy. The surface heat fluxes are initialized with a surface energy balance concept and iterated for convergent solution with atmospheric correct functions associated with aerodynamic resistance of heat transport. Furthermore, we redistribute the total net energy into sensible heat and latent heat fluxes. The result reveals that radiation and evaporation controlled extremes can be properly decided with both airborne and satellite images. The correlation coefficient of latent heat flux and sensible heat flux with corresponding in situ observations are 0.66 and 0.76, respectively. The relative root mean squared errors (RMSEs) for latent heat flux and sensible heat flux are 97.81 $(W/m^2)$ and 124.33 $(W/m^2)$, respectively. It is also shown that the newly developed retrieval scheme performs well when it is tested by using MODIS date.

  • PDF

Multi-Temporal Spectral Analysis of Rice Fields in South Korea Using MODIS and RapidEye Satellite Imagery

  • Kim, Hyun Ok;Yeom, Jong Min
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.407-411
    • /
    • 2012
  • Space-borne remote sensing is an effective and inexpensive way to identify crop fields and detect the crop condition. We examined the multi-temporal spectral characteristics of rice fields in South Korea to detect their phenological development and condition. These rice fields are compact, small-scale parcels of land. For the analysis, moderate resolution imaging spectroradiometer (MODIS) and RapidEye images acquired in 2011 were used. The annual spectral tendencies of different crop types could be detected using MODIS data because of its high temporal resolution, despite its relatively low spatial resolution. A comparison between MODIS and RapidEye showed that the spectral characteristics changed with the spatial resolution. The vegetation index (VI) derived from MODIS revealed more moderate values among different land-cover types than the index derived from RapidEye. Additionally, an analysis of various VIs using RapidEye satellite data showed that the VI adopting the red edge band reflected crop conditions better than the traditionally used normalized difference VI.

Detection of short-term changes using MODIS daily dynamic cloud-free composite algorithm

  • Kim, Sun-Hwa;Eun, Jeong;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.259-276
    • /
    • 2011
  • Short-term land cover changes, such as forest fire scar and crop harvesting, can be detected by high temporal resolution satellite imagery like MODIS and AVHRR. Because these optical satellite images are often obscured by clouds, the static cloud-free composite methods (maximum NDVI, minblue, minVZA, etc.) has been used based on non-overlapping composite period (8-day, 16-day, or a month). Due to relatively long time lag between successive images, these methods are not suitable for observing short-term land cover changes in near-real time. In this study, we suggested a new dynamic cloud-free composite algorithm that uses cut-and-patch method of cloud-masked daily MODIS data using MOD35 products. Because this dynamic composite algorithm generates daily cloud-free MODIS images with the most recent information, it can be used to monitor short-term land cover changes in near-real time. The dynamic composite algorithm also provides information on the date of each pixel used in compositing, thereby makes accurately identify the date of short-term event.

Selection and Utilization of Satellite Imagery for Environmental Assessment in Arid Regions - in the Kuche Area, Tarim Basin, China

  • Wuyi, Yu;Wentong, Dong;Jianjun, Guo;Xiaoping, Qi;Werle, Dirk;Bruce, Grant;Boivin, Tom
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1390-1392
    • /
    • 2003
  • The arid regions of western China are currently the focus of extensive exploration and development. This paper reports on recent experience gained by Chinese and Canadian project team members in the use of a variety of Earth observation satellite imagery for oil exploration and environmental assessment exercises in the Kuche area of Xinjiang. Through careful archival data selection and more recent data acquisition schemes, we have established several time series of MODIS, Landsat and Radarsat imagery in order to obtain a better understanding for daily, seasonal as well as decadal changes of the natural environment as well as man-made environmental features.

  • PDF

A Study on Forest Fire Detection from MODIS Data Using Local Spatial Association Analysis (국지적 공간상관분석을 이용한 MODIS영상에서의 산불탐지에 관한 연구)

  • Byun, Young-Gi;Huh, Yong;Kim, Yong-Min;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.1 s.39
    • /
    • pp.23-29
    • /
    • 2007
  • Spatial outliers in remotely sensed imagery represent observed quantities showing unusual values compared to their neighbor pixel values. There have been various methods to detect the spatial outliers based on spatial autocorrelations in statistics and data mining. These methods may be applied in detecting forest fire pixels in the MODIS imageries from NASA's AQUA satellite. This is because the forest fire detection can be referred to as finding spatial outliers using spatial variation of brightness temperature. In this paper, we propose a new forest fire detection algorithm which is based on local spatial association analysis, and test the proposed algorithm to evaluate its applicability. In order to evaluate the proposed algorithm, the results were compared with the MODIS fire product provided by the NASA MODIS Science Team, which showed the possibility of the proposed algorithm in detecting the fire pixels.

  • PDF

Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.25-38
    • /
    • 2016
  • With the increasing need for high temporal resolution satellite imagery for monitoring land surfaces, this study evaluated the temporal resolution of the NDVI composites from Geostationary Ocean Color Imager (GOCI) data. The GOCI is the first geostationary satellite sensor designed to provide continuous images over a $2,500{\times}2,500km^2$ area of the northeast Asian region with relatively high spatial resolution of 500 m. We used total 2,944 hourly images of the GOCI level 1B radiance data obtained during the one-year period from April 2011 to March 2012. A daily NDVI composite was produced by maximum value compositing of eight hourly images captured during day-time. Further NDVI composites were created with different compositing periods ranging from two to five days. The cloud coverage of each composite was estimated by the cloud detection method developed in study and then compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua cloud product and 16-day NDVI composite. The GOCI NDVI composites showed much higher temporal resolution with less cloud coverage than the MODIS NDVI products. The average of cloud coverage for the five-day GOCI composites during the one year was only 2.5%, which is a significant improvement compared to the 8.9%~19.3% cloud coverage in the MODIS 16-day NDVI composites.