• Title/Summary/Keyword: MMT/Epoxy nanocomposite

Search Result 10, Processing Time 0.028 seconds

The Effect of CTBN Rubber on Mechanical Properties of Epoxy-Clay Nanocomposite (CTBN 고무 첨가에 따른 에폭시-점토 나노복합체의 물성 변화)

  • Lee, Hun-Bong;Kim, Ho-Gyum;Yoon, Keun-Byoung;Lee, Dong-Ho;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • The effect of MMT on mechanical properties of CTBN toughened epoxy nanocomposite is studied. In case of CTBN toughened epoxy nanocomposite with modified MMT, it is found that the enhancement of toughness and tensile properties are exhibited in CTBN toughened epoxy nanocomposite with modified MMT From the results of fractured surface morphology of sample, it is clearly shown that the improved mechanical properties can be obtained in CTBN toughened nanocomposite due to the significant energy dissipation mechanism by MMT loading.

Tensile properties of clay reinforced nanocomposites (입자강화 나노복합재의 기계적 특성)

  • Ha S.R.;Rhee K.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.507-508
    • /
    • 2006
  • It is well-known that the mechanical properties of MMT (montmorillonite) nanocomposites are better than those of conventional composites. One of problems in fabricating MMT nanocomposites is a dispersion of nanoparticles in the composites. In this study, tensile tests were performed using universal testing machine to determine the effect of clay reinforced on the MMT/epoxy nanocomposites. It was found that the elastic modulus of nanocomposites was higher than that of pure epoxy irrespective of surface modification. Because MMT clay hod Strain of nanocomposite as a result of reinforced effect

  • PDF

Evaluation on Dielectric Properties of Epoxy/Montmorillonite Nanocomposites (에폭시/몬모릴로나이트 나노복합재료의 유전특성 평가)

  • Jang, Yong-Kyun;Kim, Woo-Nyon;Kim, Jun-Kyung;Park, Min;Yoon, Ho-Gyu
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.492-497
    • /
    • 2006
  • The epoxy composites are prepared with mixing temperature of epoxy/montmorillonite (MMT) melt master batch and the dielectric properties of the composites are also compared with intercalation of MMT. The exfoliation mainly occurrs iii the low content of MMT composites, while in the composites with high content of MMT the interspacing distance increases as the mixing temperature of epoxy/MMT master batch is increased. Class transition temperature of the composite which the MMT are effectively exfoliated is increased with the appropriate postcuring condition. Since the orientation polarization of dipoles in the epoxy molecules is restricted by the clay nanolayers exfoliated, the dielectric constant and dielectric loss of the composites are reduced. Furthermore, the dielectric properties could be improved by controling the mixing temperature and time of epoxy/MMT master batch as well as postcuring condition.

Incorporation of Montmorillonite/Silica Composite for the Corrosion Protection of an Epoxy Coating on a 2024 Aluminum Alloy Substrate

  • Thai Thu Thuy;Trinh Anh Truc;Pham Gia Vu
    • Corrosion Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.99-107
    • /
    • 2023
  • Layered silicate clay montmorillonite (MMT) has been used in nanocomposite coating to improve corrosion protection by reinforcing the barrier property. The better dispersion of MMT in the coating produces a higher barrier effect. Pretreatment with MMT could favor the delamination of clay platelets, facilitating MMT dispersion in the coating. In the present work, a montmorillonite/silica (MMT/Si) composite was prepared by the in situ sol-gel method. x-ray diffraction measurements and field-emission scanning electron microscopy observations showed silica crystal formation and increased basal spacing between the MMT platelets. Composite MMT/Si particles were introduced in an epoxy resin to reinforce the corrosion protection of the coating applied on the AA2024 surface. Electrochemical impedance spectroscopy (EIS) was performed to characterize the protective property of the coating. The results demonstrated the high barrier effect of the coating containing 5 wt% of MMT/Si. Adhesion evaluation after a salt spray test exhibited a high adherence to the epoxy coating containing MMT/Si.

Effect of Intercalant on the Synthesis and Properties of Epoxy Nanocomposites (에폭시 나노복합재료 제조 및 물성에 미치는 유기화제의 영향)

  • 강재현;유성구;최현국;서길수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.414-420
    • /
    • 2001
  • In this study, the effect of type of intercalant on properties of epoxy nanocomposites was investigated. Cetyltrimethylammoniumbromide (CTMA) as an alkylammonium salt and cetyltributylphosphoniumbromgide (CTBP) as an alkylphosphonium salt were used to modify sodium montmorillonite. In the case of using the CTMA as an intercalant, the long spacing of the silicate layer was about $18.8 {\AA}$. When CTBP was used, the long spacing of the silicate layer ( $23.8{\AA}$) was higher than that of CTMA. From these results, the characteristic length of the modified silicate was found to be significantly affected by the type of intercalant. We also noted that the thermal stability of modified MMT were affected by the type of intercalant, but in the epoxy nanocomposites prepared from the modified MMT, the thermal stability remains almost the same regardless of the type of intercalant. Tensile strength and elongation of epoxy nanocomposites prepared from MMT modified with CTBT were found to be higher than those of the epoxy nanocomposite prepare with WT modified with CTMA.

  • PDF

Structural properties of the epoxy resin which adds the Nanofiller (Nanofiller를 첨가한 에폭시 수지의 구조적 특성)

  • Lee, Chang-Gong;Lee, Sung-Gap;Ahn, Byeong-Lib;Won, Woo-Sik;Woo, Hyoung-Gwan;Noh, Hyun-Ji
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1234-1235
    • /
    • 2008
  • To add Nanofiller in the epoxy which is used with the solid insulation material of existing and is a research which observes the improvement of the structural quality to produce the Nanocomposite. Montmorillonite uses with Nanofiller, MMT of the content expense (wt%) which is various and mixed an epoxide and produced sample. According to content of the sample result MMT according to respectively content expense to measure SEM photographing which is the possibility of knowing the minute structure of section with sample where is produced and the tensile strength will be able to observe the change of quality. MMT silicate layer uniformly more in the result and within epoxy matrix, being dispersed, will be able to observe.

  • PDF

Nanocomposites from Epoxy Resin and Layered Minerals (에폭시 수지와 층상광물로부터 나노복합재료의 합성)

  • 강재현;유성구;서길수
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.571-577
    • /
    • 2000
  • A new type of filler for epoxy-clay nanocomposites has been prepared by the reaction of octadecyltrimethylammonium bromide and layered sodium montmorillonite (MMT) via an ion-exchange reaction. The gallery space was further modified by grafting the aminopropyl groups via a reaction between a octadecyltrimethylammonium-MMT and 3-aminopropyltriethoxysilane (APS). The interlayer modification of MMT was confirmed by XRD, IR, and solid-state $^{29}$ Si CP/MAS NMR. Furthermore, clay-polymer nanocomposites have been synthesized by the polymerization of diglycidyl ether of bisphenol A(DGEBA) and $C_{18}$ H$_{37}$ N($CH_3$)$_3$-APS-MMT. The resulting hybrid nanocomposites were characterized by XRD, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The results proved that the organomontmorillonite could be exfoliated and uniformly dispersed in the epoxy matrix.

  • PDF

The structure properties of polymer composite (고분자 복합재료의 구조적 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Nam, Sung-Pill;Kim, Da-Mi;Ahn, Byeong-Lib;Won, Woo-Sik;Woo, Hyoung-Gwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.262-263
    • /
    • 2009
  • To add Nanofiller in the epoxy which is used with the solid insulation material of existing and is a research which observes the improvement of the structural quality to produce the Nanocomposite. Montmorillonite uses with Nanofiller, MMT of the content expense (wt%) which is various and mixed an epoxide and produced sample. According to content of the sample result MMT according to respectively content expense to measure SEM photographing which is the possibility of knowing the minute structure of section with sample where is produced and the tensile strength will be able to observe the change of quality. MMT silicate layer uniformly more in the result and within epoxy matrix, being dispersed, will be able to observe.

  • PDF