• Title/Summary/Keyword: MMSE Equalization

Search Result 42, Processing Time 0.031 seconds

Performance of SC-FDE System in UWB Communications with Imperfect Channel Estimation

  • Wang, Yue;Dong, Xiaodai
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.466-472
    • /
    • 2007
  • Single carrier block transmission with frequency domain equalization(SC-FDE) has been shown to be a promising candidate in ultra-wideband(UWB) communications. In this paper, we analyze the performance of SC-FDE over UWB communications with channel estimation error. The probability density functions of the frequency domain minimum mean-squared error(MMSE) equalizer taps are derived in closed form. The error probabilities of single carrier block transmission with frequency domain MMSE equalization under imperfect channel estimation are presented and evaluated numerically. Compared with the simulation results, our semi-analytical analysis yields fairly accurate bit error rate performance, thus validating the use of the Gaussian approximation method in the performance analysis of the SC-FDE system with channel estimation error.

Single Carrier Frequency Domain Equalization in 3-slot Based Amplify-and-Forward Relaying Network for Shadow Area (음영 지역을 위한 3-슬롯 기반의 AF 방식 중계기 네트워크에서의 단일 반송파 주파수 대역 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.9-16
    • /
    • 2012
  • In order to extend cell coverage and to cope with shadow areas, a relay-assisted wireless communications system has been widely studied. In this paper, we propose new equalization method for single carrier (SC) frequency domain equalizer (FDE) in amplify-and-forward (AF) relaying multi-path networks to improve the performance at shadow areas. The performance of SC-FDE system in 3-slot based multi-path networks can be improved considerably with the diversity gain which we obtain by equalizing the combined signal from relays by means of the minimum mean square error (MMSE) criteria. We find the weighting coefficients of maximum ratio combining (MRC) and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying multi-path networks. Simulation results show that the proposed system considerably outperforms the conventional SC-FDE system.

Reduced-state sequence estimation for trellis-coded 8PSK/cyclic prefixed single carrier (트렐리스 부호화된 8PSK/CPSC를 위한 RSSE 방식)

  • 고상보;강훈철;좌정우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.20-23
    • /
    • 2003
  • A reduced-state sequence estimation(RSSE) for trellis-coded (TC) 8PSK/cyclic prefixed single carrier(CPSC) with minimum mean-square error-liner equalization(MMSE-LE) on frequency-selective Rayleigh fading channels is proposed. The Viterbi algorithm (VA) is used to search for the best path through the reduced-state trellis combined equalization and TCM decoding. The symbol error probability of the proposed scheme is confirmed by computer simulation.

  • PDF

Effect of SNR Estimation Error on MMSE-DFE in High-speed Binary CDMA System (고속 Binary CDMA 시스템에서 MMSE-DFE에 대한 SNR 추정 오차의 영향)

  • Kang, Sung-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.735-741
    • /
    • 2011
  • In this paper, we have analyzed the effect of SNR estimation error on the BER performance of MMSE-DFE in high-speed binary CDMA system. Since MMSE equalization algorithm requires the SNR value of input signal, it should be estimated using CAZAC sequence in preamble. However, when AWGN and ISI exist simultaneously, it is impossible to estimate the exact SNR value of input signal and thereby equalizer's performance may be deteriorated. The simulation results can be used as a guideline for selection of SNR estimation algorithm for MMSE-DFE design.

Low Complexity MMSE with Successive Interference Cancellation for OFDM Systems over Time-selective Channels (시변 채널 환경에서 OFDM 시스템을 위한 복잡도가 감소된 MMSE-SIC 등화기법)

  • Park, Ji-Hyun;Hwang, Seung-Hoon;Whang, Keum-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.743-750
    • /
    • 2008
  • Orthogonal frequency division multiplexing (OFDM) is a attractive modulation scheme for high data rate transmission in frequency-selective channels. However, the time selectivity of wireless channel introduces intercarrier interference (ICI), and consequently degrades system performance. In this paper, we first propose a novel recursive algorithm for minimum mean squared error (MMSE) with successive interference cancellation (SIC). The proposed algorithm can significantly reduce the complexity of the MMSE-SIC scheme and achieve the same performance when optimal ordering is known. Also, the further reduced scheme of the proposed algorithm can be developed based on ICI properties, while preserving performance.

Non-data Aided Timing Phase Recovery Scheme for Digital Equalization of Chromatic Dispersion and Polarization Mode Dispersion

  • Park, Jang-Woo;Chung, Won-Zoo;Park, Jong-Sun;Kim, Sung-Chul
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.367-372
    • /
    • 2009
  • In this paper we propose an electronic domain timing phase selection scheme for the optical communication systems suffering from inter-symbol-interference (ISI) distortion due to chromatic dispersion (CD) or polarization mode dispersion (PMD). In the presence of CD/PMD a proper timing phase selection is important for discrete time domain equalizers, since different timing phases produce different nonlinear ISI channels of different severity. The proposed timing phase recovery scheme based on dispersion minimization (DM) practically approximates the optimal minimum mean squared error (MMSE) timing phase without training signals which reduces overall throughput substantially, especially in time-varying channels such as PMD. The simulation results show that the proposed DM timing agrees with MMSE timing phase, under proper normalization of the received signals, for various dispersion and OSNR.

An Improved LLR Generation Technique for SC-FDMA Systems Using Frequency Domain MMSE Equalization (주파수 영역 MMSE 등화방식 기반의 SC-FDMA 시스템을 위한 개선된 LLR 생성 기법)

  • Kim, Jin-Min;Im, Tae-Ho;Kim, Jae-Kwon;Yi, Joo-Hyun;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1197-1207
    • /
    • 2009
  • Orthogonal Frequency Division Multiple Access (OFDMA) is widely used as a multiple access technique for next generation mobile communication systems, however, its main drawback is the high peak-to-average ratio (PAPR). Thus for the uplink case where the transmit power is strictly limited due to the battery life of mobile units, single carrier frequency division multiple access (SC-FDMA) with low PAPR is preferred to OFDMA method. In this paper, we propose a method to improve the performance of SC-FDMA using frequency domain MMSE equalization. The proposed improved log-likelihood ratio (LLR) generation method exploits both the diversity characteristic of channels and the reciprocity that is obtained from the received signals. The complexity of the proposed method is analyzed and its performance gain is demonstrated via a set of computer simulations.

Multi-Stage Turbo Equalization for MIMO Systems with Hybrid ARQ

  • Park, Sangjoon;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.333-339
    • /
    • 2016
  • A multi-stage turbo equalization scheme based on the bit-level combining (BLC) is proposed for multiple-input multiple-output (MIMO) systems with hybrid automatic repeat request (HARQ). In the proposed multi-stage turbo equalization scheme, the minimum mean-square-error equalizer at each iteration calculates the extrinsic log-likelihood ratios for the transmitted bits in a subpacket and the subpackets are sequentially replaced at each iteration according to the HARQ rounds of received subpackets. Therefore, a number of iterations are executed for different subpackets received at several HARQ rounds, and the transmitted bits received at the previous HARQ rounds as well as the current HARQ round can be estimated from the combined information up to the current HARQ round. In addition, the proposed multi-stage turbo equalization scheme has the same computational complexity as the conventional bit-level combining based turbo equalization scheme. Simulation results show that the proposed multi-stage turbo equalization scheme outperforms the conventional BLC based turbo equalization scheme for MIMO systems with HARQ.

MMSE Equalization technique for single carrier broadband system in SFN (단일반송파 시스템에서 MMSE 주파수 영역 등화기의 성능분석)

  • Kim, Hak-Jin;Choi, Jin-Yong;Seo, Jong-Soo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.219-222
    • /
    • 2010
  • OFDM시스템의 대안으로, SC-FDE시스템은 주파수 선택적 페이딩 환경에서 구현상의 복잡도가 크지 않으면서 낮은 PAPR로 다중 경로 지연에 의한 영향을 완화시키기 위한 기술로 연구되어 왔다. SC-FDE시스템에서 보호 구간으로 PN신호를 훈련 심볼(Training Sequence)로 둠으로써 CP에 비해 빠른 동기화와 채널 추정에 사용될 수 있는 장점이 있으며, 채널 추정을 위해 Correlation과 LMS기법을 동시에 적용함으로써 에러가 최소가 되기까지 수렴 시간을 줄일 수 있다. 본 논문에서는 PN시퀀스를 기반으로 추정한 채널 값으로, ISI를 효과적으로 제거할 수 있는 MMSE-FDE 등화 기법을 제안한다. SFN 채널 환경과 같이 스펙트럼 널이 강한 다중 경로 페이딩환경에서 ISI를 선 제거 하는 ISI cancellation 기법을 통해 정확한 SNR추정을 할 수 있고, 이를 통해 MMSE-FDE 등화 성능을 향상 시킬 수 있다.

  • PDF

Blind Turbo Equalization System with Beamforming (빔포밍이 적용된 블라인드 터보 등화기)

  • Kim, Yongguk;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.10
    • /
    • pp.850-857
    • /
    • 2013
  • Turbo equalizer system is a method which can improve performance through a combination of the equalizer and decoder. The turbo equalizer has been mainly used a MAP equalizer. However, this turbo equalizer has a disadvantage that has a high computational complexity. To overcome the disadvantage and to improve efficiency of bandwidth, blind turbo equalization system is proposed. blind turbo equalization system has low equalization performance than conventional turbo equalization system. To circumvent this problem, we adapt the beamforming method based on the MUSIC algorithm. we confirmed that the proposed method improves the equalization performance.