• Title/Summary/Keyword: MMSE 등화

Search Result 37, Processing Time 0.021 seconds

Turbo Equalization using Belief Propagation (Belief Propagation을 이용한 터보 등화기)

  • Lee, Yun-Hee;Choi, Soo-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.281-282
    • /
    • 2008
  • Turbo equalizers which use MAP (maximum a posteriori probability) equalizer or MMSE (minimum mean square error) equalizer have shown high performance and adoptability [1], [2]. In this paper, we show that the BP (belief propagation) algorithm can also be applied in equalizer and when it is connected with channel code, it can replace the MAP equalizer with similar complexity and performance.

  • PDF

A Single-User ]deceiver using Pilot-Assisted Channel Equalizer for DS-CDMA Downlink (DS-CDMA 하향링크에서 파일럿지원 채널등화기를 이용한 단일사용자 수신기)

  • 남옥우;김재형;김응배
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.661-669
    • /
    • 2000
  • DS-CDMA downlink distinguishes actual user by orthogonal spreading codes ,but its orthogonality may be lost by the multiple access interference(MAI) caused by the multipath channel. Therefore in this paper, we proposed the single-user receiver, which use linear channel equalizer to eliminate the interference due to multipath channel and to recover orthogonality and then use code-matched filter to detect transmitted data. Unlike existing research, which mainly assumed ideal channel information, we use pilot channel assisted methods that is a kind of transmission of a parallel reference method to estimate the channel coefficients. Especially we use guard symbols which are inserted periodically to estimate channel coefficients exactly without interference from user signal. The results show that we accepted an approximately ideal channel information and achieved excellent performance improvement using proposed receiver compared with the conventional receiver especially user populations are high.

  • PDF

Performance of MIMO-OFDM System with Linear Pre-Equalization over Fading Channel (페이딩 환경에서 선형 사전 등화를 이용한 MIMO-OFDM 시스템의 성능)

  • Bae, Jung-Nam;Park, Woo-Chul;Kim, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1269-1274
    • /
    • 2010
  • Wireless communication channels with the most severe multipath fading phenomenon that appears each time a different delay is caused by the frequency selective fading. At this time, ISI due to the performance degradation of wireless communication channels and data transfer speed gives the constraints. OFDM technique can remove ISI inserting longer guard interval than channel delay spread of channel between symbol. However, the multi-path delay of the channel to be serious with the guard interval can not eliminate ISI. In this case, using the equalizer must compensate. Especially, use of equalizer is need absolutely as data rate becomes high speed. In this paper, we analyze the BER performance with pre-equalization for MIMO-OFDM over fading channel. The results of this paper can be applied to MIMO-OFDM system with equalization.

Compensation of OFDM Signal Degraded by Phase Noise and IQ Imbalance (위상 잡음과 직교 불균형이 있는 OFDM 수신 신호의 보상)

  • Ryu, Sang-Burm;Kim, Sang-Kyun;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1028-1036
    • /
    • 2008
  • In the OFDM system, IQ imbalance problem happens at the RF front-end of transceiver, which degrades the BER(bit error rate) performance because it affects the constellation in the received signal. Also, phase noise is generated in the local oscillator of transceivers and it destroys the orthogonality between the subcarriers. Conventional PNS algorithm is effective for phase noise suppression, but it is not useful anymore when there are jointly IQ(In-phase and Quadrature) imbalance and phase noise. Therefore, in this paper, we analyze the effect of IQ imbalance and phase noise generated in the down-conversion of the receiver. Then, we estimate and compensate the IQ imbalance and phase noise at the same time. Compared with the conventional method that IQ imbalance after IFFT is estimated and compensated in front of FFT via the feedback, this proposed method extracts and compensates effect of IQ imbalance after FFT stage. In case IQ imbalance and phase noise exist at the same time, we can decrease complexity because it is needless to use elimination of IQ imbalance in time domain and training sequences and preambles. Also, this method shows that it reduces the ICI and CPE component using adaptive forgetting factor of MMSE after FFT.

The Effects of Time Domain Windowing and Detection Ordering on Successive Interference Cancellation in OFDM Systems over Doubly Selective Channels (이중 선택적 채널 OFDM 시스템에서 시간 영역 윈도우와 검출 순서가 순차적 간섭 제거에 미치는 영향)

  • Lim, Dong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.635-641
    • /
    • 2010
  • Time-varying channel characteristics in OFDM systems over doubly selective channels cause inter-carrier interferences(ICI) in the frequency domain. Time domain windowing gives rise to restriction on the bandwidth of the frequency domain channel matrix and makes it possible to approximate the OFDM system as a simplified linear input-output model. When successive interference cancellation based on linear MMSE estimation is employed for channel equalization in OFDM systems, symbol detection ordering produces considerable effects on overall system performances. In this paper, we show the reduction of the residual ICI by time domain windowing and the resultant performance improvements, and investigate the effects of SINR- and CSEP-based symbol detection ordering on the performance of successive interference cancellation.

MIMO-OFDM System with Insufficient Cyclic Prefix (불충분한 CP를 갖는 MIMO-OFDM 시스템)

  • Lim Jong-Bu;Choi Chan-Ho;Im Gi-Hong;Kim Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.10-17
    • /
    • 2006
  • For orthogonal frequency division multiplexing (OFDM), cyclic prefix (CP) should be longer than the length of channel impulse response, resulting in a loss of bandwidth efficiency. In this letter, the CP reconstruction (CPR) technique is first applied to a multi-input multi-output (MIMO)-OFDM system with insufficient CP. The intercarrier interference (ICI) from multiple transmit antennas is so large for MIMO system that it can not be sufficiently suppressed with the conventional CPR procedure used in single-input single-output (SISO) system. A new minimum mean-square error (MMSE) equalization and ordering process is proposed for MIMO system to suppress the ICI during the CPR procedure. By applying the proposed CPR algerian to MIMO-OFDM system, we can obtain both the benefits of multiplexing gai and spectral efficiency gain.

Beam Diversity Receiver Using 7-Element ESPAR Antenna (전자 빔 조향 기생 배열 안테나를 사용한 빔 다이버시티 수신기)

  • An, Changyoung;Lee, Seung Hwan;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.1
    • /
    • pp.36-42
    • /
    • 2014
  • In this paper, we propose receiver using ESPAR antenna for diversity gain. The proposed receiver receive signal by changing direction of beam pattern alternately in the OFDM symbol time period when DoA is estimated. In this way, the proposed receiver obtains diversity gain. The proposed receiver has single RF chain. If beam direction is changed alternately then it causes spectrum spread. And then, ICI occur because of spectrum spread. This interference can be equalized at the frequency domain equalizer such as ZF, MMSE and ML. In simulation, the proposed system receive signal using beam pattern of $60^{\circ}$ and beam pattern of $120^{\circ}$ alternately in OFDM symbol time period when it is assumed that DoA is $60^{\circ}$ and $120^{\circ}$. The performance results confirm that it is possible that the proposed receiver obtains diversity gain.