• Title/Summary/Keyword: MMA (Methyl methacrylate)

Search Result 199, Processing Time 0.032 seconds

Preparation of Alkyl Acrylate and Functional Monomer Multi Core-Shell Composite Particles (알킬 아크릴레이트와 관능성 단량체계 다중 Core-Shell 복합입자의 제조)

  • Choi, Sung-Il;Cho, Dae-Hoon;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Multi core-shell composite particles were prepared by the water-born emulsion polymerization of various core monomers such as methyl methacrylate (MMA), ethyl methacrylate (EMA) and shell monomers such as MMA, EMA, 2-hydroxyl ethyl methacrylate (2-HEMA), glycidyl methacrylate (GMA) and methacrylic acid (MAA) in the presence of different concentrations of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the conversion, particle size and distribution, average molecular weight, molecular structure, glass transition temperature with DSC, contact angle after plasma treatment, tensile strength and isothermal decomposition kinetics. In the case of the concentration of 0.02 wt% SDBS, the conversion of MMA core-(EMA/GMA) shell composite particles was excellent as 98.5%. In the case of the concentration of 0.03 wt% SDBS, the particle size of EMA core-(MMA/GMA) shell composite particles was high as $0.48{\mu}m$. We confirmed that 3 points of glass transition temperatures appear for multi core-shell composite particles compared to 1~2 points of glass transition temperatures appear for general copolymer particles. Overall, the adhesion strength of shell composite particles was in the order of EMA/MAA > EMA/2-HEMA > EMA/GMA.

The Role of MMA and EGDMA in Enhancing the Mechanical Properties of PMMA Composites (PMMA 복합재의 기계적 특성 향상을 위한 MMA 및 EGDMA의 역할 연구)

  • Aqila Che Ab Rahman;Shiyoung Yang;Sooman lim
    • Journal of Integrative Natural Science
    • /
    • v.17 no.2
    • /
    • pp.53-58
    • /
    • 2024
  • This study explores the enhancement of mechanical properties in Polymethyl Methacrylate (PMMA) composites through the incorporation of Methyl Methacrylate (MMA) and Ethylene Glycol Dimethacrylate (EGDMA). Utilizing Digital Light Processing (DLP) technology, we conducted a series of experiments to analyze the impact of varying concentrations of MMA and EGDMA on PMMA. The results indicate that while MMA demonstrates non-linear and variable mechanical strength across different PMMA concentrations, EGDMA consistently improves mechanical strength as PMMA concentration increases. This consistent enhancement by EGDMA suggests a stable and predictable reinforcement effect, which is critical for applications requiring high mechanical strength. Our comparative analysis highlights that EGDMA is a more effective additive than MMA for optimizing the mechanical performance of PMMA composites. Specifically, EGDMA's ability to provide uniform reinforcement across various PMMA concentrations makes it ideal for high-strength applications. These findings are significant for material scientists and engineers focused on the design and development of advanced PMMA-based materials. In conclusion, this research underscores the importance of selecting appropriate additives to enhance the mechanical properties of PMMA composites. The superior performance of EGDMA in reinforcing PMMA suggests its potential for broader applications in fields such as automotive, construction, medical devices, and 3D printing. This study provides valuable insights that can guide future research and development in high-performance composite materials, paving the way for innovative applications and improved material efficiency.

Synthesis and Monomer Reactivity Ratio of PNIPAAM-PMMA Random Copolymer (PNIPAAM-PMMA Random Copolymer의 합성 및 단량체 반응성비 측정)

  • 이창배;조창기
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.168-173
    • /
    • 2000
  • Radical copolymerization of N-isopropylacrylamide (NIPAAM) with methyl methacrylate (MMA) was carried out in 1,4-dioxane using 2,2'-azobisisobutyronitrile (AIBN). To investigate the reactivity ratios of NIPAAM and MMA at different reaction temperatures, the copolymerization was allowed to proceed to low conversion (less than 10 wt%), and the reaction temperatures were 50, 60, and 7$0^{\circ}C$. The monomer reactivity ratios of NIPAAM and MMA were estimated by the graphical methods according to the Finemann-Ross equation. The ${\gamma}$$_1$ and ${\gamma}$$_2$ values for NIPAAM-MMA were 0.259 and 2.782 at 5$0^{\circ}C$, 0.271 and 2.819 at 6$0^{\circ}C$, and 0.286 and 2.915 at 7$0^{\circ}C$, respectively. As the reaction temperature increased, the ${\gamma}$$_1$ and ${\gamma}$$_2$ values increased. The activation energy difference was estimated by comparing the reactivity ratios at different reaction temperatures.

  • PDF

Optical and Mechanical Properties of Styrene/Butyl Acrylate/Methyl Methacrylate Terpolymers (스티렌/부틸아크릴레이트/메틸메타아크릴레이트 삼원 공중합체의 투명성 및 기계적 물성)

  • Jang, Sang Jin;Park, Hae Youn;Seo, Kwan Ho
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.191-199
    • /
    • 2015
  • In order to improve the low impact resistance of polystyrene without harming its transparency the styrene monomer was copolymerized with transparent butyl acrylate (BA), and methylmethacrylate (MMA) to obtained a poly(styrene-co-butylacrylate) P(SM-co-BA) and a terpolymer copolymer P(SM-co-BA-co-MMA). The polymers were then cross-linked with the aid of a cross-linking agent dicumylperoxide (DCP), and their mechanical and optical properties were tested. It was found that the contents of monomers and DCP affect the mechanical, thermal, and optical properties of the polymers. An increase in BA contents in P(SM-co-BA) and P(SM-BA-MMA) improved the mechanical strength, but the optical properties remained the same with some exception for P(SM-co-BA). An increase in the DCP contents improved the mechanical but found losses in the optical properties.

Effect of Functional Monomers on Pressure-sensitive Adhesives of Acrylic Emulsion (아크릴에멀젼 점착제에 대한 기능성 단량체의 영향)

  • Choi, Yong-Hae;Kang, Jin-Kyu;Lee, Won-Ki
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • The waterborne acrylic pressure-sensitive adhesive in the basis of butylacylate (BA) and 2-Ethylhexylacrylate (2-EHA) was synthesized and the methyl methacrylate (MMA) have been used to give the rigidity perfroamce. The polymreric latex was synthesized using butyl acrylate (BA), 2-ethylhexyl acrylate (EHA), methyl methacrylate (MMA) and each 1, 2, 3% of various functional monomers. The dimethyl-2-imidazlidon acrylate and 2-acrylamido-2-methyl-1-propanesulfonate was used in order to increase the wetting properties of acrylic emulsion. To study of properties of functional monomer, The polymreric latex was synthesized various functional monomers each 1, 2, 3%. The 2-acrylamido-2-methyl-1-propanesulfonate showed the best properties. Latex with acrylic acid and dimethyl-2-imidazlidon acrylate had good peel strength, holding power, but it showed that they didn't separate from adhered cleanly by weak cohesion strength. The adhesion performance was increased by increasing amount of 2-acrylamido-2-methyl-1-propanesulfonate however latexes with upper 7% 2-acrylamido-2-methyl-1-propanesulfonate showed that the properties of PSA decreased.

  • PDF

Humidity Sensitive Properties of Humidity Sensor using Quaternized Cross-linked Copolymers of Vinylbenzyl chloride (4차 염화 가교화된 Vinylbenzyl chloride 공중합체를 감습막으로 이용한 습도센서의 감습 특성)

  • Lee, Seong-Su;Gong, Myeong-Seon
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.825-830
    • /
    • 2000
  • The copolymers with various composition of vinylbenzyl chloride (VBC), methyl methacrylate (MMA), and 2-hydroxyethyl methacrylate(HEMA) were synthesized as a humidity sensitive material and quaternized with N, N, N', N'-tetraethylene diamine.. Resistance versus relative humidity decreased with increase in the content of MMA in the copolymer. The introduction of HPMA increased the resistance of the humidity sensor as well as enhanced the adherence to the alumina substrate. In the case of VBC/MMA/HEMA=80/10/10, the hysteresis and temperature dependency coefficient were $\pm$2%RH and -0.46~0.42%RH/$^{\circ}C$. The average resistance at 30%RH, 60%RH and 90%RH were 3.0M$\Omega$ ,200k$\Omega$ and 9k$\Omega$, respectively.

  • PDF

Dielectric Properties of Plasma Polymerized ppMMA Thin Film (플라즈마 증합법으로 증착된 ppMMA 박막의 유전특성)

  • Lim, J.S.;Shin, P.K.;Nam, K.Y.;Kim, J.S.;Hwang, M.H.;Kim, J.T.;Lee, Y.H.;Kang, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1408-1409
    • /
    • 2006
  • In this paper, poly methyl methacrylate thin films were deposited on a ITO glass substrate using a plasma polymerization technique. In order to investigate the influence of the plasma coupling method and plasma conditions on the plasma polymerized poly methyl methacrylate (ppMMA) thin film properties, inductively coupled (ICP) and capacitively coupled plasma (CCP) were used to generate the plasma and the plasma parameters were varied. Molecular structures of the ppMMAs were investigated using a Fourier Transform Infrared (FT-IR) spectroscopy. Dielectric constants of the ppMMA thin films were investigated using a impedance analyzer (HP4192A, LF Impedance Analyzer). Current-Voltage (I-V) characteristics of the ppMMA thin films were investigated using a source measurement unit (SMU: Keithley 2400). Relationship between the plasma coupling technique/process parameter and ppMMA thin films properties were investigated.

  • PDF

Plasma Treatment Effect of Organic/Organic Core-Shell Acrylic Adhesive Binder (II) (Organic/Organic Core-Shell 아크릴 접착바인더의 플라즈마 처리영향 (II))

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2010
  • Adhesive binders with core-shell structure of organic/organic pair were prepared by emulsion polymerization of acrylic monomers, such as methyl methacrylate(MMA), ethyl acrylate(EA), n-butyl acrylate(BA), and styrene(St). Ammonium persulfate (APS) was used as an water soluble initiator in the presence of an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS). Non-woven fabric and leather were impregnated with the adhesive binder. The surface of the impregnated fabric and leather were treated with plasma technique and then kinetics analysis and mechanical properties were measured. The conversions of the polymerization of core-shell binder (MMA/EA, MMA/BA) were greater than 90%. When the core-shell binder was prepared at equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the impregnated and plasma-treated non-woven/non-woven fabric has the order of MMA/St, EA/BA, BA/MMA, EA/St, and EA/MMA. When the core-shell binder was prepared at non-equimolar conditions, the increasing effect of the core-shell binder on the state peel strength of the non-woven fabric/leather has the order of MMA/BA, BA/EA, MMA/EA, St/MMA, and EA/St.

A Study on Thermal Degradation of Poly (methyl methacrylate) (PMMA) using TGA (TGA를 이용한 Poly(methyl methacrylate) (PMMA)의 열분해 특성 연구)

  • Kim, Sang-Guk;Choi, Hyun-Gyu;Eom, Yu-Jin;Kim, Joo-Sik
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.360-367
    • /
    • 2005
  • PMMA has been used extensively worldwide as industrial and construction materials due to its excellent material properties. When PMMA is subject to thermal degradation, unit of monomers are detached from polymer chain and this phenomena is called unzip reaction. Therefore, PMMA thermally degrades into its monomer. Characteristics of thermal degradation of PMMA has been investigated using TGA in this research as a basic study for recovery of MMA.

  • PDF

Polymerization of Methyl Methacrylate with Phenylsilane

  • 유희권;박선희;박진영;양수연;함희숙;김환기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.373-376
    • /
    • 1996
  • The bulk thermal and photopolymerization of methyl methacrylate(MMA) with phenylsilane were performed to produce poly(MMA)s containing phenylsilyl moiety presumably as an end group. It was found for both thermal and photopolymerization that while the polymerization yields and polymer molecular weights decreased as the relative phenylsilane concentration increases, the TGA residue yields and the relative intensities of SiH IR stretching bands increased with increasing molar ratio of phenylsilane over MMA. The polymerization yield, molecular weight, and TGA residue yield for the thermal polymerization were higher than those for the photopolymerization. Thus, the phenylsilane seemed to significantly influence on the polymerization as both chain initiation and chain transfer agents. However, an appreciable silane effect was not observed on the thermal and photopolymerization of 4-vinylpyridine, acrylonitrile, styrene, and vinyltrimethoxysilane.