• Title/Summary/Keyword: MLS 방법

Search Result 47, Processing Time 0.022 seconds

A Study on the Reduction of Greenhouse Gas in Container Terminal (컨테이너터미널의 온실가스 저감방안에 관한 연구)

  • Kim, Seon-Gu;Choi, Yong-Seok
    • Journal of Korea Port Economic Association
    • /
    • v.28 no.1
    • /
    • pp.105-122
    • /
    • 2012
  • This paper proposes a fuzzy-based AHP model by which the greenhouse gas reduction for container terminal problem was systematically structured and then evaluated. The model was established by exploiting a fuzzy theory and AHP for capturing the inexactness and vagueness of information. In this study, measurement areas were selected for equipment aspect, operating aspect, and energy aspect. The greenhouse gas reduction is the number one priority in the equipment aspect, operating aspect, energy aspect in order. The analysis result of equipment aspect reveals that the most important element is electrical T/C. The most important element of operating and energy aspect were a container rehandling and a LED lighting. As for the whole priority which conversion weight was applied, the results were shown as follows: an electrical T/C(16.2%) as the first rank: a hybrid Y/T(14.4%) as the second rank: a AMP(10.6%) as the third rank. The result of this study suggests some guidelines for deciding priority of greenhouse gas reduction for container terminal.

Determination of Four Macrolide Antibiotics Residues in Chicken Muscle Using High-Performance Liquid Chromatography (액체크로마토그래피를 이용한 닭고기 시료에서의 마크로라이드계 동시분석법 개발)

  • Lee, Sang-Hee;Yoo, Miyoung;Shin, Dong-Bin
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • A simple and rapid method has been developed and validated for simultaneous determination of each macrolides residues (spiramycin, josamycin, tilmicosin, tylosin) in chicken muscle by high-performance liquid chromatography- photo diode array (HPLC-PDA). Chicken muscle sample have been extracted with liquid-liquid extraction process; analytes was extracted by acetonitrile, and then defatted with hexane saturated by acetonitrile. The HPLC separation was performed on a Unison UK-$C_{18}$ ($150mm{\times}3.0mm$, $3{\mu}m$) with a gradient system of 0.1% trifloroacetic acid (TFA) and 0.1% trifloroacetic acid (TFA) in acetonitrile as the mobile phase. The drugs were detected at 232 nm for spiramycin and josamycin, and 287 nm for tilmicosin and tylosin. The limits of quantification (LOQs) were between 27 and $59{\mu}g/kg$; and the intra- and inter-day precision (relative standard deviation; RSD) was between 0.9-13.2 and 2.4-13.1%, respectively in chicken muscle sample. The method may has been successfully applied for multiresidue determination of four macrolides below the maximum residue limits (MRLs) established by the European Union (EU).

Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste (순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가)

  • Park, Seyong;Kim, Moonil;Park, Seonghyuk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.3
    • /
    • pp.5-16
    • /
    • 2021
  • In this study, the applicability of the MBR(Membrane Bio Reactor) process of oxygen dissolve was evaluated through comparison and evaluation of the efficiency of oxygen dissolve device and conventional aeration device in the explosive tank within the MBR process. The organic matter and ammonia oxidation by oxygen dissolve device were evaluated, and the efficiency of persaturation was evaluated by applying real waste water (anaerobic digester effluent treatement from food waste). SCOD and ammonia removal rates for oxygen dissolve device and conventional aeration device methods were similar. However, it was determined that the excess sludge treatment cost could be reduced as the yield of microorganisms by oxygen dissolve device is about 0.03 g MLSS-produced/g SCOD-removed lower than that of microorganisms by conventional aeration device. The removal rates of high concentrations of organic matter (4,000 mg/L) and ammonia (1,400 mg/L) in anaerobic digester effluent treatment from food waste were compared to the conventional aeration device and the oxygen dissolve device organic matter removal rate was approximately 13% higher than that of the conventional aeration device. In addition, for MLSS, the conventional aeration device was 0.3 times higher than for oxygen dissolve device. This is believed to be due to the high progress of sludge autooxidation because the dissolved oxygen is sufficiently maintained and supplied in the explosive tank for oxygen dissolve device. Therefore, it was determined that the use of oxygen dissolve device will be more economical than conventional aeration device as a way to treat wastewater containing high concentrations of organic matter.

An Improved Reliability-Based Design Optimization using Moving Least Squares Approximation (이동최소자승근사법을 이용한 개선된 신뢰도 기반 최적설계)

  • Kang, Soo-Chang;Koh, Hyun-Moo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.45-52
    • /
    • 2009
  • In conventional structural design, deterministic optimization which satisfies codified constraints is performed to ensure safety and maximize economical efficiency. However, uncertainties are inevitable due to the stochastic nature of structural materials and applied loads. Thus, deterministic optimization without considering these uncertainties could lead to unreliable design. Recently, there has been much research in reliability-based design optimization (RBDO) taking into consideration both the reliability and optimization. RBDO involves the evaluation of probabilistic constraint that can be estimated using the RIA (Reliability Index Approach) and the PMA(Performance Measure Approach). It is generally known that PMA is more stable and efficient than RIA. Despite the significant advancement in PMA, RBDO still requires large computation time for large-scale applications. In this paper, A new reliability-based design optimization (RBDO) method is presented to achieve the more stable and efficient algorithm. The idea of the new method is to integrate a response surface method (RSM) with PMA. For the approximation of a limit state equation, the moving least squares (MLS) method is used. Through a mathematical example and ten-bar truss problem, the proposed method shows better convergence and efficiency than other approaches.

The Practical Study for the Treatment of Fish Processing Saline Wastewater Using Immersed MBR (iMBR 공정을 이용한 수산물가공폐수 처리에 관한 실증적 고찰)

  • Park, Seung Kyun;Lee, Dong Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.469-475
    • /
    • 2016
  • The study is the result of an practical operation analysis for the full scale fishery product wastewater treatment plant with immersed MBR (iMBR) process. Since fishery product industries show a wide range of wastewater generation by the season, design and operation of the equalization basin are very important factor. The aeration system for the equalization basin mixing can save the chemical consumption for followed system through the restriction of acid fermentation. The concentrations of wastewater primary DAF process treated were BOD 2,291 mg/L, $COD_{Mn}$ 530 mg/L, SS 256.8 mg/L, T-N 38 mg/L, T-P 13.5 mg/L respectively. It was considered that iMBR is the most efficient biological process for high salinity content wastewater since It is irrelevant to the capability of the sludge precipitation. SADp and SADm were 0.31, $26.5m^3/hr{\cdot}m^3$ respectively. In iMBR process, the critical F/M ratio was derived at 0.08~0.10 gBOD/gMLSS by analysing the correlations between MLSS, normalized TMP and temperature. The effluent concentrations were BOD 1.8 mg/L, $COD_{Mn}$ 12.4 mg/L, SS 1.0 mg/L, T-N 7.85 mg/L, T-P 0.1 mg/L and removal efficiencies were 99.9%, 97.6%, 96.3%, 95.7%, 97.8% respectively.

Treatment of Wastewater from Agricultural Industrial Complex by Combination of Electrochemical and Activated Sludge Process Systems (전기화학적 방법과 활성오니 공정의 병합에 의한 농공단지폐수 처리)

  • Lee, Hong-Jae;Seo, Dong-Cheol;Cho, Ju-Sik;Park, Hyun-Geoun;Lee, Chun-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.289-296
    • /
    • 2001
  • The effects of HRT and effluent time on removals of pollutants in the electrochemical pilot were investigated. COD removal after 8 hour electrochemical reaction time in HRT 30 and 60 minutes were higher than that of 15 minute HRT. Turbidity removal was 90% or greater regardless of conditions during effluent time. Removals of T-N and T-P during effluent time in HRT 30 and 60 minutes were $71{\sim}74%$ and $85{\sim}98%$, respectively. To evaluate the combination of activated sludge process and continuous electrochemical as pretreatment, the removal efficiencies of pollutants was investigated. In two treatment processes of a single activated sludge system and a electrolysis pilot plus activated sludge systems, SVI and MLSS during effluent time were kept with $82{\sim}112$ and $1,230{\sim}1,750$ mg/L, respectively. COD removal was approximately 90% at early effluent time for both treatment systems, but COD removal in a single activated sludge was slightly decreased as effluent time went by, compared with the single activated sludge COD removal was slightly increased in the early stage of the electrolysis plus activated sludge system. Turbidity removal during effluent time was higher than 95% for both treatment systems. T-N removals during effluent time in a single activated sludge system and a electrolysis pilot plus activated sludge systems were $62{\sim}74%$ and $72{\sim}86%$, respectively. T-P removal in a electrolysis pilot plus activated sludge systems was increased by 9% at early effluent time and 15% after 72 hours of effluent time in compared with a single activated sludge system.

  • PDF

Method of Reducing Separation Membrane Fouling Using Microbubbles (마이크로버블을 이용한 분리막 파울링 저감방법)

  • Kyung-Hwan Ku;Younghee Kim
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.31-38
    • /
    • 2023
  • Due to water shortages caused by water pollution and climate change, total organic carbon (TOC) standards have been implemented for wastewater discharged from public sewage treatment facilities. Furthermore, there is a growing interest and body of research pertaining to the reuse of sewage treatment water as a secure alternative water resource. The membrane bio-reactor (MBR) method is commonly used for advanced wastewater treatment because it can remove organic and inorganic ions and it does not require or emit any chemicals. However, the MBR process uses a separation membrane (MF), which requires frequent film cleaning due to fouling caused by a high concentration of mixed liquor suspended solid (MLSS). In this study, process improvement and microbubble cleaning efficiency were evaluated to improve the differential pressure, water flow, and MF fouling, which are the biggest disadvantages of operating the MF. The existing MBR method was improved by installing a precipitation tank between the air tank and the MBR tank in which raw water was introduced. Microbubbles were injected into a separation membrane tank into which the supernatant water from the precipitation tank was introduced. The microbubble generator was operated with a 15 day on, 15 day off cycle for 5 months to collect discharged water samples (4L) and measure TOC. As the supernatant water from the precipitation tank flowed into the separation membrane tank, about 95% of the supernatant water MLSS was removed so the MF fouling from biological contamination was prevented. Due to the application of microbubbles to supernatant water from the precipitation tank, the differential pressure of the separation membrane tank decreased by 1.6 to 2.3 times and the water flow increased by 1.4 times. Applying microbubbles increased the TOC removal rate by more than 58%. This study showed that separately operating the air tank and the separation membrane tank can reduce fouling, and suggested that applying additional microbubbles could improve the differential pressure, water flow, and fouling to provide a more efficient advanced treatment method.