DOI QR코드

DOI QR Code

Evaluation of pure oxygen with MBR(Membrane Bio Reactor) process for anaerobic digester effluent treatment from food waste

순산소의 MBR(Membrane Bio Reactor) 공정 적용을 통한 음식물류 폐기물 혐기성소화 유출수 처리 평가

  • Park, Seyong (Bioresource Center, Institute for Advanced Engineering) ;
  • Kim, Moonil (Department of Civil & Environmental Engineering, Hanyang University) ;
  • Park, Seonghyuk (Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University)
  • 박세용 (고등기술연구원 바이오자원순환센터) ;
  • 김문일 (한양대학교 건설환경공학과) ;
  • 박성혁 (동아대학교 ICT융합해양스마트시티공학과)
  • Received : 2021.08.12
  • Accepted : 2021.09.02
  • Published : 2021.09.30

Abstract

In this study, the applicability of the MBR(Membrane Bio Reactor) process of oxygen dissolve was evaluated through comparison and evaluation of the efficiency of oxygen dissolve device and conventional aeration device in the explosive tank within the MBR process. The organic matter and ammonia oxidation by oxygen dissolve device were evaluated, and the efficiency of persaturation was evaluated by applying real waste water (anaerobic digester effluent treatement from food waste). SCOD and ammonia removal rates for oxygen dissolve device and conventional aeration device methods were similar. However, it was determined that the excess sludge treatment cost could be reduced as the yield of microorganisms by oxygen dissolve device is about 0.03 g MLSS-produced/g SCOD-removed lower than that of microorganisms by conventional aeration device. The removal rates of high concentrations of organic matter (4,000 mg/L) and ammonia (1,400 mg/L) in anaerobic digester effluent treatment from food waste were compared to the conventional aeration device and the oxygen dissolve device organic matter removal rate was approximately 13% higher than that of the conventional aeration device. In addition, for MLSS, the conventional aeration device was 0.3 times higher than for oxygen dissolve device. This is believed to be due to the high progress of sludge autooxidation because the dissolved oxygen is sufficiently maintained and supplied in the explosive tank for oxygen dissolve device. Therefore, it was determined that the use of oxygen dissolve device will be more economical than conventional aeration device as a way to treat wastewater containing high concentrations of organic matter.

본 연구에서는 MBR 공정 내 폭기조에서 순산소 용해와 일반 공기 폭기의 효율에 대한 비교·평가를 통해 순산소의 MBR 공정 적용성에 대해 평가 하였다. 순산소 장치에 의한 유기물 및 암모니아 산화 여부에 대해 평가하였으며, 실폐수(음식물류 폐기물의 혐기성소화 유출수) 적용 과포화산소용해 효율 평가를 진행하였다. 순산소용해와 일반공기폭기 방법의 SCOD, 암모니아 제거율과 속도는 비슷하였다. 하지만, 순산소 용해에 의한 미생물 수율이 일반공기폭기법에 의한 미생물 수율보다 약 0.03 g MLSS-produced/g SCOD-removed 낮아 잉여슬러지 처리 비용이 감소될 수 있을 것이라 판단된다. 음식물류 폐기물의 혐기성 소화 유출수의 고농도 유기물 (4,000 mg/L) 및 암모니아 (1,400 mg/L)의 제거율을 순산소용해와 일반공기폭기법을 비교한 결과, 순산소 용해기가 일반공기폭기법에 비해 유기물 제거율이 약 13% 가량 더 높게 평가되었다. 또한, MLSS의 경우 일반공기폭기법이 순산소장치에 비해 0.3배가량 높았다. 이는, 순산소장치의 경우 폭기조 내에 용존산소가 충분히 유지, 공급되기 때문에 슬러지 자산화가 고도로 진행된 결과로 판단되었다. 따라서, 고농도 유기물을 함유한 폐수 처리를 위한 방법으로는 기존에 많이 사용되었던 일반공기폭기법보다 순산소장치를 활용하는 것이 경제적인 면에서 더 유리할 것으로 판단되었다.

Keywords

Acknowledgement

본 연구는 한국환경산업기술원의 지원을 받아 수행한 연구과제입니다. (No. 2020003160018)

References

  1. Alexander, B. F. and Shah, Y. T., "Gas-liquid mass transfer coefficients for - 205 cocurrent upflow in packed beds", Can. J. Chem. Eng., 546, pp. 556~559. (1976). https://doi.org/10.1002/cjce.5450540534
  2. Chen, Z., Wen, Q. and Wang, J., "High rate aerobic treatment of synthetic wastewater using enhanced coagulant high-performance compact reactor (ECHCR)", Biochem. Eng. J., 31(3), pp. 223~227. (2006). https://doi.org/10.1016/j.bej.2006.08.006
  3. Bbecke, Lu., Vogelpohl, S. and Dewjanin, A. W., "Wastewater treatment in a biological high-performance system with high biomass concentration", Water Res., 29, pp. 793~02. (1995). https://doi.org/10.1016/0043-1354(94)00215-S
  4. Park, J. S., Yeon, K. M. and Lee, C.H., "Hydrodynamics and microbial physiology affecting performance of a new MBR, membrane coupled high performance compact reactor", Desalination, 172(2), pp. 181~88. (2004). https://doi.org/10.1016/j.desal.2004.07.035
  5. Wilcox., E. A. and McWhirter, J. R., "The "UNOX" system-oxygen aeration in the activated sludge process", Journal of the american oil chemists society, 48, pp. 408~415. (1971).
  6. Zhu, X., Mohammad, I. and Zui-yuan, F., "Performance of paper mill wastewater treatment project using UNOX process", China water and Wastewater, 10, pp. 79~82. (2014).
  7. Choi, J. H. and Kim.Y. J., "The effect of dissolved oxygen concentration on operation parameters of the pure-oxygen activated sludge process", J. of KSWQ., 13(2), pp. 183~190. (1997).
  8. Calderon, B., Gonzalez-Martinez, A., Montero-Puente, C., Reboleiro-Rivas, P., Poyatos, J. M., Juarez-Kimenez, B., Martinez-Toledo, M. V. and Rodelas, B., "Bacterial community structure and enzyme activies in a membrane bioreactor (MBR) using pure oxygen as an aeration source", Bioresource Technology, 103, pp. 87~94. (2012). https://doi.org/10.1016/j.biortech.2011.09.133
  9. Yeon, K. M., Park, J. S. and Kee, C. H., "Membrane coupled high-performance compact reactor: A new MBR system for advanced wastewater treatment", Water Res., 39(10), pp. 1954~1961. (2005). https://doi.org/10.1016/j.watres.2005.03.006
  10. Zhiqian, C., Qinxue, W. and Jianlong, W., "High rate aerobic treatment of synthetic wastewater using enhanced coagulant high-performance compact (EC-HCR)", Biochemical Engineering Journal, 31, pp. 223~227. (2006). https://doi.org/10.1016/j.bej.2006.08.006
  11. Petruccioli, M., Duarte, J. C., Eujsebio, A. and Federici, F., "Aerobic treatment of winery wastewater using a jet-loop activated sludge reactor", Process Biochem, 37, pp. 821~29. (2002). https://doi.org/10.1016/S0032-9592(01)00280-1
  12. Mendoza-Espinosa, L. and Stephenson, T. "A review of biological aerated filters BAFsfor wastewater treatment", Environ. Eng. Sci., 163, pp. 201~216. (1999). https://doi.org/10.1089/ees.1999.16.201
  13. Kouakou, E., Salmon, T., Toye, D. P. and Marchot, M. C., "Gas-liquid mass transfer in a circulating jet-loop nitrifying MBR", Chem. Eng. Sci., 60(22), pp. 6346-6353. (2005). https://doi.org/10.1016/j.ces.2005.04.025
  14. Wachsmann, U., Reabiger, N. and Vogelpohl, A. "The compact reactor-A newly developed loop reactor with a high mass transfer performance", Chem. Eng., 7, pp. 39~44. (1984).
  15. Kent, T. D., Williams, S. C. and Fitzpatrick, C. S. B., "Ammoniacal nitrogen removal in biological aerated filters: The effect of media size", J. Inst. Water Environ. Manage., 14(6), pp. 409~414. (2000). https://doi.org/10.1111/j.1747-6593.2000.tb00286.x
  16. Bitter, J. G. A., Transport mechanisms in membrane separation process, 1st ed., Plunum press, New York, pp. 1~6. (1991).
  17. Jo, S. and Lee, B., "Treatment of the Dye Wastewater by the Pure Oxygen Activated Sludge Process", J Korean Soc Environ Eng., 21(5), pp. 989~976. (1999).