• Title/Summary/Keyword: MLP condition

Search Result 22, Processing Time 0.024 seconds

Fault Classification of a Blade Pitch System in a Floating Wind Turbine Based on a Recurrent Neural Network

  • Cho, Seongpil;Park, Jongseo;Choi, Minjoo
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.287-295
    • /
    • 2021
  • This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

Classification of Tire Tread Wear Using Accelerometer Signals through an Artificial Neural Network (인공신경망을 이용한 가속도 센서 기반 타이어 트레드 마모도 판별 알고리즘)

  • Kim, Young-Jin;Kim, Hyeong-Jun;Han, Jun-Young;Lee, Suk
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.163-171
    • /
    • 2020
  • The condition of tire tread is a key parameter closely related to the driving safety of a vehicle, which affects the contact force of the tire for braking, accelerating and cornering. The major factor influencing the contact force is tread wear, and the more tire tread wears out, the higher risk of losing control of a vehicle exits. The tire tread condition is generally checked by visual inspection that can be easily forgotten. In this paper, we propose the intelligent tire (iTire) system that consists of an acceleration sensor, a wireless signal transmission unit and a tread classifier. In addition, we also presents classification algorithm that transforms the acceleration signal into the frequency domain and extracts the features of several frequency bands as inputs to an artificial neural network. The artificial neural network for classifying tire wear was designed with an Multiple Layer Perceptron (MLP) model. Experiments showed that tread wear classification accuracy was over 80%.

Adherence-induced gene expression in human alveolar macrophages (표면부착에 의한 사람 폐포대식세포의 유전자 발현에 관한 연구)

  • Chung, Man Pyo;Yoo, Chul Gyu;Han, Sung Koo;Shim, Young-Soo;Rhee, Chong H.;Han, Yang Chol;Kim, Young Whan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.936-944
    • /
    • 1996
  • Background: Neutrophils or monocytes separated in vitro by the adherence to plastic surface are known to be activated by surface adherence itself and subsequent experimental data might be altered by surface adherence. Adhesion molecules and gene transcription of the inflammatory mediators are known to be associated in this process. To evaluate whether adhesion molecule and transcriptional activation of the inflammatory substances are also involved in the activation of human alveolar macrophage by the adherence procedure, we designed this experiment. Method : Bronchoalveolar lavage was performed in the person whose lung of either side was confirmed to be nonnal by chest cr and alveolar macrophage was harvested. To measure the expression of Interleukin-8(IL-8) mRNA, manganese superoxide dismutase(SOD) mRNA and CD11/CD18 mRNA in human alveolar macrophage of both adherence state and suspension state, Northern blot analysis was done at 0, 2, 4, 8 and 24hrs after the adherence to plastic surface and during suspension state. Then, phorbol myristate acetate(pMA) and N-formyl-methionyl-leucyl-phenylalanine(fMLP) were added respectively in the same experimental condition. Result : 1) Human alveolar macrophages in the adherent state induced IL-8 mRNA and SOD mRNA expression which was maximal at 8 hours after the adherence to plastic surface. But we could not observe the upregulation of CD18 mRNA by surface adherence. 2) PMA induced these mRNA expression both in the adherent cell and the nonadherem cells, but the induction of mRNA expression by fMLP occurred only in the adherent cells. Conclusion: These results suggest that adherence of huamn alveolar macropahge is an important cell-activating event that may play a critical role in the modulation of lung inflammatory respones.

  • PDF

Deep CNN based Pilot Allocation Scheme in Massive MIMO systems

  • Kim, Kwihoon;Lee, Joohyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4214-4230
    • /
    • 2020
  • This paper introduces a pilot allocation scheme for massive MIMO systems based on deep convolutional neural network (CNN) learning. This work is an extension of a prior work on the basic deep learning framework of the pilot assignment problem, the application of which to a high-user density nature is difficult owing to the factorial increase in both input features and output layers. To solve this problem, by adopting the advantages of CNN in learning image data, we design input features that represent users' locations in all the cells as image data with a two-dimensional fixed-size matrix. Furthermore, using a sorting mechanism for applying proper rule, we construct output layers with a linear space complexity according to the number of users. We also develop a theoretical framework for the network capacity model of the massive MIMO systems and apply it to the training process. Finally, we implement the proposed deep CNN-based pilot assignment scheme using a commercial vanilla CNN, which takes into account shift invariant characteristics. Through extensive simulation, we demonstrate that the proposed work realizes about a 98% theoretical upper-bound performance and an elapsed time of 0.842 ms with low complexity in the case of a high-user-density condition.

Voice Activity Detection Algorithm base on Radial Basis Function Networks with Dual Threshold (Radial Basis Function Networks를 이용한 이중 임계값 방식의 음성구간 검출기)

  • Kim Hong lk;Park Sung Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1660-1668
    • /
    • 2004
  • This paper proposes a Voice Activity Detection (VAD) algorithm based on Radial Basis Function (RBF) network using dual threshold. The k-means clustering and Least Mean Square (LMS) algorithm are used to upade the RBF network to the underlying speech condition. The inputs for RBF are the three parameters in a Code Exited Linear Prediction (CELP) coder, which works stably under various background noise levels. Dual hangover threshold applies in BRF-VAD for reducing error, because threshold value has trade off effect in VAD decision. The experimental result show that the proposed VAD algorithm achieves better performance than G.729 Annex B at any noise level.

Gyroscope Signal Denoising of Ship's Autopilot using Kalman Filter and Multi-Layer Perceptron (칼만필터와 다층퍼셉트론을 이용한 선박 오토파일럿의 자이로스코프 신호 잡음제거)

  • Kim, Min-Kyu;Kim, Jong-Hwa;Yang, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.809-818
    • /
    • 2019
  • Since January 1, 2020, the International Maritime Organization (IMO) has put in place strong regulations to reduce air pollution caused by ships by lowing the upper limit of ship fuel oil sulfur content from 3.5% to 0.5% for ships passing through all sea areas around the world. Although it is important to reduce air pollutants by using fuel oil with low sulfur content, reducing the amount of energy waste through the economic operation of a ship can also help reduce air pollutants. Ships can follow designated routes accurately even under the influence of noise using autopilot systems. However, regardless of their quality, the performance of these systems is af ected by noise; heading angles with added measurement noise from the gyroscope are input into the autopilot system and degrade its performance. A technique to solve these problems reduces noise effects through the application of a Kalman filter, which is widely used in condition estimation. This method, however, cannot completely eliminate the effects of noise. Therefore, to further improve noise removal performances, in this study we propose a better denoising method than the Kalman filter technique by applying a multi-layer perceptron (MLP) in forward direction motion and a Kalman Filter in rotation motion. Simulations show that the proposed method improves forward direction motion by preventing the malfunction of a rudder more so than merely using a Kalman Filter.

Ovarian Cancer Microarray Data Classification System Using Marker Genes Based on Normalization (표준화 기반 표지 유전자를 이용한 난소암 마이크로어레이 데이타 분류 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.2032-2037
    • /
    • 2011
  • Marker genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect marker genes that are selected by ranking genes according to statistics after normalizing data with methods that are the most widely used among several normalization methods proposed the while, And it compare and analyze a performance of each of normalization methods with mult-perceptron neural network layer. The Result that apply Multi-Layer perceptron algorithm at Microarray data set including eight of marker gene that are selected using ANOVA method after Lowess normalization represent the highest classification accuracy of 99.32% and the lowest prediction error estimate.

Feature Vector Decision Method of Various Fault Signals for Neural-network-based Fault Diagnosis System (신경회로망 기반 고장 진단 시스템을 위한 고장 신호별 특징 벡터 결정 방법)

  • Han, Hyung-Seob;Cho, Sang-Jin;Chong, Ui-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1009-1017
    • /
    • 2010
  • As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.

The Design Of Microarray Classification System Using Combination Of Significant Gene Selection Method Based On Normalization. (표준화 기반 유의한 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 설계)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2259-2264
    • /
    • 2008
  • Significant genes are defined as genes in which the expression level characterizes a specific experimental condition. Such genes in which the expression levels differ significantly between different groups are highly informative relevant to the studied phenomenon. In this paper, first the system can detect informative genes by similarity scale combination method being proposed in this paper after normalizing data with methods that are the most widely used among several normalization methods proposed the while. And it compare and analyze a performance of each of normalization methods with multi-perceptron neural network layer. The Result classifying in Multi-Perceptron neural network classifier for selected 200 genes using combination of PC(Pearson correlation coefficient) and ED(Euclidean distance coefficient) after Lowess normalization represented the improved classification performance of 98.84%.