• Title/Summary/Keyword: MLP Neural Network

Search Result 260, Processing Time 0.021 seconds

The prediction of atmospheric concentrations of toluene using artificial neural network methods in Tehran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Mehdinejad, Mahdi
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.219-231
    • /
    • 2015
  • In recent years, raising air pollutants has become as a big concern, especially in metropolitan cities such as Tehran. Therefore, forecasting the level of pollutants plays a significant role in air quality management. One of the forecasting tools that can be used is an artificial neural network which is able to model the complicated process of air pollution. In this study, we applied two different methods of artificial neural networks, the Multilayer Perceptron (MLP) and Radial Basis Function (RBF), to predict the hourly air concentrations of toluene in Tehran. Hourly temperature, wind speed, humidity and $NO_x$ were selected as inputs. Both methods had acceptable results; however, the RBF neural network produced better results. The coefficient of determination ($R^2$) between the observed and predicted data was 0.9642 and 0.99 for MLP and RBF neural networks, respectively. The results of the mean bias errors (MBE) were 0.00 and -0.014 for RBF and MLP, respectively which indicate the adequacy of the models. The index of agreement (IA) between the observed and predicted data was 0.999 and 0.994 in the RBF and the MLP, respectively which indicates the efficiency of the models. Finally, sensitivity analysis related to the MLP neural network determined that temperature was the most significant factor in air concentration of toluene in Tehran which may be due to the volatile nature of toluene.

Isolated Digit Recognition Combined with Recurrent Neural Prediction Models and Chaotic Neural Networks (회귀예측 신경모델과 카오스 신경회로망을 결합한 고립 숫자음 인식)

  • Kim, Seok-Hyun;Ryeo, Ji-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.129-135
    • /
    • 1998
  • In this paper, the recognition rate of isolated digits has been improved using the multiple neural networks combined with chaotic recurrent neural networks and MLP. Generally, the recognition rate has been increased from 1.2% to 2.5%. The experiments tell that the recognition rate is increased because MLP and CRNN(chaotic recurrent neural network) compensate for each other. Besides this, the chaotic dynamic properties have helped more in speech recognition. The best recognition rate is when the algorithm combined with MLP and chaotic multiple recurrent neural network has been used. However, in the respect of simple algorithm and reliability, the multiple neural networks combined with MLP and chaotic single recurrent neural networks have better properties. Largely, MLP has very good recognition rate in korean digits "il", "oh", while the chaotic recurrent neural network has best recognition in "young", "sam", "chil".

  • PDF

Predicting Atmospheric Concentrations of Benzene in the Southeast of Tehran using Artificial Neural Network

  • Asadollahfardi, Gholamreza;Mehdinejad, Mahdi;Mirmohammadi, Mohsen;Asadollahfardi, Rashin
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.1
    • /
    • pp.12-21
    • /
    • 2015
  • Air pollution is a challenging issue in some of the large cities in developing countries. In this regard, data interpretation is one of the most important parts of air quality management. Several methods exist to analyze air quality; among these, we applied the Multilayer Perceptron (MLP) and Radial Basis Function (RBF) methods to predict the hourly air concentration of benzene in 14 districts in the municipality of Tehran. Input data were hourly temperature, wind speed and relative humidity. Both methods determined reliable results. However, the RBF neural network performance was much closer to observed benzene data than the MLP neural network. The correlation determination resulted in 0.868 for MLP and 0.907 for RBF, while the Index of Agreement (IA) was 0.889 for MLP and 0.937 for RBF. The sensitivity analysis related to the MLP neural network indicated that the temperature had the greatest effect on prediction of benzene in comparison with the wind speed and humidity in the study area. The temperature was the most significant factor in benzene production because benzene is a volatile liquid.

Modelling of dissolved oxygen (DO) in a reservoir using artificial neural networks: Amir Kabir Reservoir, Iran

  • Asadollahfardi, Gholamreza;Aria, Shiva Homayoun;Abaei, Mehrdad
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.153-167
    • /
    • 2016
  • We applied multilayer perceptron (MLP) and radial basis function (RBF) neural network in upstream and downstream water quality stations of the Karaj Reservoir in Iran. For both neural networks, inputs were pH, turbidity, temperature, chlorophyll-a, biochemical oxygen demand (BOD) and nitrate, and the output was dissolved oxygen (DO). We used an MLP neural network with two hidden layers, for upstream station 15 and 33 neurons in the first and second layers respectively, and for the downstream station, 16 and 21 neurons in the first and second hidden layer were used which had minimum amount of errors. For learning process 6-fold cross validation were applied to avoid over fitting. The best results acquired from RBF model, in which the mean bias error (MBE) and root mean squared error (RMSE) were 0.063 and 0.10 for the upstream station. The MBE and RSME were 0.0126 and 0.099 for the downstream station. The coefficient of determination ($R^2$) between the observed data and the predicted data for upstream and downstream stations in the MLP was 0.801 and 0.904, respectively, and in the RBF network were 0.962 and 0.97, respectively. The MLP neural network had acceptable results; however, the results of RBF network were more accurate. A sensitivity analysis for the MLP neural network indicated that temperature was the first parameter, pH the second and nitrate was the last factor affecting the prediction of DO concentrations. The results proved the workability and accuracy of the RBF model in the prediction of the DO.

Nonlinear Adaptive Prediction using Locally and Globally Recurrent Neural Networks (지역 및 광역 리커런트 신경망을 이용한 비선형 적응예측)

  • 최한고
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.139-147
    • /
    • 2003
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing such as signal prediction. This paper proposes the hybrid network, composed of locally(LRNN) and globally recurrent neural networks(GRNN), to improve dynamics of multilayered recurrent networks(RNN) and then describes nonlinear adaptive prediction using the proposed network as an adaptive filter. The hybrid network consists of IIR-MLP and Elman RNN as LRNN and GRNN, respectively. The proposed network is evaluated in nonlinear signal prediction and compared with Elman RNN and IIR-MLP networks for the relative comparison of prediction performance. Experimental results show that the hybrid network performs better with respect to convergence speed and accuracy, indicating that the proposed network can be a more effective prediction model than conventional multilayered recurrent networks in nonlinear prediction for nonstationary signals.

System Identification Using Hybrid Recurrent Neural Networks (Hybrid 리커런트 신경망을 이용한 시스템 식별)

  • Choi Han-Go;Go Il-Whan;Kim Jong-In
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2005
  • Dynamic neural networks have been applied to diverse fields requiring temporal signal processing. This paper describes system identification using the hybrid neural network, composed of locally(LRNN) and globally recurrent neural networks(GRNN) to improve dynamics of multilayered recurrent networks(RNN). The structure of the hybrid nework combines IIR-MLP as LRNN and Elman RNN as GRNN. The hybrid network is evaluated in linear and nonlinear system identification, and compared with Elman RNN and IIR-MLP networks for the relative comparison of its performance. Simulation results show that the hybrid network performs better with respect to the convergence and accuracy, indicating that it can be a more effective network than conventional multilayered recurrent networks in system identification.

  • PDF

The development of four efficient optimal neural network methods in forecasting shallow foundation's bearing capacity

  • Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.151-168
    • /
    • 2024
  • This research aimed to appraise the effectiveness of four optimization approaches - cuckoo optimization algorithm (COA), multi-verse optimization (MVO), particle swarm optimization (PSO), and teaching-learning-based optimization (TLBO) - that were enhanced with an artificial neural network (ANN) in predicting the bearing capacity of shallow foundations located on cohesionless soils. The study utilized a database of 97 laboratory experiments, with 68 experiments for training data sets and 29 for testing data sets. The ANN algorithms were optimized by adjusting various variables, such as population size and number of neurons in each hidden layer, through trial-and-error techniques. Input parameters used for analysis included width, depth, geometry, unit weight, and angle of shearing resistance. After performing sensitivity analysis, it was determined that the optimized architecture for the ANN structure was 5×5×1. The study found that all four models demonstrated exceptional prediction performance: COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP. It is worth noting that the MVO-MLP model exhibited superior accuracy in generating network outputs for predicting measured values compared to the other models. The training data sets showed R2 and RMSE values of (0.07184 and 0.9819), (0.04536 and 0.9928), (0.09194 and 0.9702), and (0.04714 and 0.9923) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively. Similarly, the testing data sets produced R2 and RMSE values of (0.08126 and 0.07218), (0.07218 and 0.9814), (0.10827 and 0.95764), and (0.09886 and 0.96481) for COA-MLP, MVO-MLP, PSO-MLP, and TLBO-MLP methods respectively.

A Spatiotemporal Parallel Processing Model for the MLP Neural Network (MLP 신경망을 위한 시공간 병렬처리모델)

  • Kim Sung-Oan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.95-102
    • /
    • 2005
  • A Parallel Processing model by considering a spatiotemporal parallelism is presented for the training procedure of the MLP neural network. We tried to design the flexible Parallel Processing model by simultaneously applying both of the training-set decomposition for a temporal parallelism and the network decomposition for a spatial parallelism. The analytical Performance evaluation model shows that when the problem size is extremely large, the speedup of each implementation depends, in the extreme, on whether the problem size is pattern-size intensive or pattern-quantify intensive.

  • PDF

Predicting PM2.5 Concentrations Using Artificial Neural Networks and Markov Chain, a Case Study Karaj City

  • Asadollahfardi, Gholamreza;Zangooei, Hossein;Aria, Shiva Homayoun
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.67-79
    • /
    • 2016
  • The forecasting of air pollution is an important and popular topic in environmental engineering. Due to health impacts caused by unacceptable particulate matter (PM) levels, it has become one of the greatest concerns in metropolitan cities like Karaj City in Iran. In this study, the concentration of $PM_{2.5}$ was predicted by applying a multilayer percepteron (MLP) neural network, a radial basis function (RBF) neural network and a Markov chain model. Two months of hourly data including temperature, NO, $NO_2$, $NO_x$, CO, $SO_2$ and $PM_{10}$ were used as inputs to the artificial neural networks. From 1,488 data, 1,300 of data was used to train the models and the rest of the data were applied to test the models. The results of using artificial neural networks indicated that the models performed well in predicting $PM_{2.5}$ concentrations. The application of a Markov chain described the probable occurrences of unhealthy hours. The MLP neural network with two hidden layers including 19 neurons in the first layer and 16 neurons in the second layer provided the best results. The coefficient of determination ($R^2$), Index of Agreement (IA) and Efficiency (E) between the observed and the predicted data using an MLP neural network were 0.92, 0.93 and 0.981, respectively. In the MLP neural network, the MBE was 0.0546 which indicates the adequacy of the model. In the RBF neural network, increasing the number of neurons to 1,488 caused the RMSE to decline from 7.88 to 0.00 and caused $R^2$ to reach 0.93. In the Markov chain model the absolute error was 0.014 which indicated an acceptable accuracy and precision. We concluded the probability of occurrence state duration and transition of $PM_{2.5}$ pollution is predictable using a Markov chain method.

Long-term runoff simulation using rainfall LSTM-MLP artificial neural network ensemble (LSTM - MLP 인공신경망 앙상블을 이용한 장기 강우유출모의)

  • An, Sungwook;Kang, Dongho;Sung, Janghyun;Kim, Byungsik
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • Physical models, which are often used for water resource management, are difficult to build and operate with input data and may involve the subjective views of users. In recent years, research using data-driven models such as machine learning has been actively conducted to compensate for these problems in the field of water resources, and in this study, an artificial neural network was used to simulate long-term rainfall runoff in the Osipcheon watershed in Samcheok-si, Gangwon-do. For this purpose, three input data groups (meteorological observations, daily precipitation and potential evapotranspiration, and daily precipitation - potential evapotranspiration) were constructed from meteorological data, and the results of training the LSTM (Long Short-term Memory) artificial neural network model were compared and analyzed. As a result, the performance of LSTM-Model 1 using only meteorological observations was the highest, and six LSTM-MLP ensemble models with MLP artificial neural networks were built to simulate long-term runoff in the Fifty Thousand Watershed. The comparison between the LSTM and LSTM-MLP models showed that both models had generally similar results, but the MAE, MSE, and RMSE of LSTM-MLP were reduced compared to LSTM, especially in the low-flow part. As the results of LSTM-MLP show an improvement in the low-flow part, it is judged that in the future, in addition to the LSTM-MLP model, various ensemble models such as CNN can be used to build physical models and create sulfur curves in large basins that take a long time to run and unmeasured basins that lack input data.