• 제목/요약/키워드: MLP(Multi-Perceptron)

검색결과 250건 처리시간 0.025초

MLP(Multi-Layer Perceptron) 신경망을 활용한 투자 자산분배 시스템 개발 (Development of Investment Distribution System Using MLP(Multi-Layer Perceptron) Neural Network)

  • 박병훈;안민주;양다은;최다연;김정민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.746-748
    • /
    • 2022
  • 투자 분배 시스템은 지속성, 수익성, 변동성, 하방경직성 등 각각의 지표를 찾아내는 데이터 분석을 조합한 시스템으로 MLP 신경망을 통한 시황을 예측으로 투자 경험이 부족한 일반 사용자에게 안정적인 투자 분배 전략을 제공한다. 투자분배 시스템 구현을 위하여 추가적으로 금융시장에 대한 회귀분석, 켈리 공식과 같은 도구를 활용하였다.

Low-noise reconstruction method for coded-aperture gamma camera based on multi-layer perceptron

  • Zhang, Rui;Tang, Xiaobin;Gong, Pin;Wang, Peng;Zhou, Cheng;Zhu, Xiaoxiang;Liang, Dajian;Wang, Zeyu
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2250-2261
    • /
    • 2020
  • Accurate localization of radioactive materials is crucial in homeland security and radiological emergencies. Coded-aperture gamma camera is an interesting solution for such applications and can be developed into portable real-time imaging devices. However, traditional reconstruction methods cannot effectively deal with signal-independent noise, thereby hindering low-noise real-time imaging. In this study, a novel reconstruction method with excellent noise-suppression capability based on a multi-layer perceptron (MLP) is proposed. A coded-aperture gamma camera based on pixel detector and coded-aperture mask was constructed, and the process of radioactive source imaging was simulated. Results showed that the MLP method performs better in noise suppression than the traditional correlation analysis method. When the Co-57 source with an activity of 1 MBq was at 289 different positions within the field of view which correspond to 289 different pixels in the reconstructed image, the average contrast-to-noise ratio (CNR) obtained by the MLP method was 21.82, whereas that obtained by the correlation analysis method was 5.85. The variance in CNR of the MLP method is larger than that of correlation analysis, which means the MLP method has some instability in certain conditions.

다층 레이어 퍼셉트론 기반 INS 내장형 컴퓨터에서의 실시간 중력교란 보상 (MLP Based Real-Time Gravity Disturbance Compensation in INS Embedded Computer)

  • 김현석;김형수;최윤혁;조윤철;박찬식
    • 한국항행학회논문지
    • /
    • 제27권5호
    • /
    • pp.674-684
    • /
    • 2023
  • 이 논문에서는 INS의 항법 정확도에 영향을 주는 중력 교란에 대한 실시간 예측기법으로 다층 퍼셉트론 모델을 제안하였다. 적합한 MLP 모델을 선정하기 위해서 학습 정확도 및 실행시간을 비교할 수 있게 신경망의 크기가 다른 4개의 모델을 설계하였다. 이 MLP 모델의 학습을 위해 해상 또는 육상의 지표면을 따라 이동하는 물체의 위치 및 중력교란 데이터를 사용하였으며, 중력교란 데이터의 계산은 2160차의 EGM2008을 SHM을 이용하여 이루어졌다. 학습 정확도 평가에서는 MLP4가 가장 우수한 것으로 확인 되었고, 이후 실행시간을 측정하기 위해 학습이 완료된 4개 모델의 가중치와 바이어스 항들을 INS의 내장형 컴퓨터에 저장하여 MLP 모델을 구현하였다. 4개 모델 중 MLP4의 실행시간이 가장 짧은 것을 확인할 수 있었다. 이러한 연구 결과는 향후 중력 교란 보상을 통한 INS의 항법 정확도를 향상시키는데 활용될 수 있을 것으로 기대된다.

신경망이론을 이용한 폴리우레탄 코팅포 촉감의 예측 (Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics)

  • 이정순;신혜원
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2001년도 춘계학술대회 논문집
    • /
    • pp.280-285
    • /
    • 2001
  • 폴리우레탄 코팅포의 촉감을 예측하기 위하여 신경망 이론이 사용되었다. 본 연구에서는 Neural Connection의 MLP(Multi Layer Perceptron)를 신경망 분석에 사용하였으며, 학습 알고리즘은 백프로파게인션(Backpropagation)을 이용하였다. 사용된 변수는 KES-FB시스템에서 측정된 17가지 역학적 특성치를 설명변수, 촉감치를 목표변수로 하였다. 폴리우레탄 코팅포의 촉감을 정확하게 예측할 수 있는 신경망 모델을 찾기 위해, 은닉층의 노드수를 8에서 34로 변화시켜 보았다. 또한 MLP적용함수로 선형함수, 비선형 시그모이드함수, 탄젠트 함수를 사용하여 목표변수를 예측하여 모형의 정확도를 살펴보았다. 구축된 신경망모델은 17가지 역학적특성치 자료를 이용하여 학습되었으며 학습 완료 후 학습에 사용되지 않은 시료를 시스템에 적용하여 학습된 신경망 시스템이 촉감을 평가하게 한 후 주관적으로 평가된 촉감치와 비교하여 본 시스템의 판단의 정확성을 평가하도록 하였다. 은닉층의 노드수와 MLP적용함수는 촉감예측에 영향을 미치는 것으로 나타났는데, 촉감 예측에 가장 적절한 모형은 MLP 적용함수가 탄젠트 함수이고 노드수가 22인 것으로 나타났다. 신경망을 통한 폴리우레탄 코팅포의 촉감 예측력은 선행연구에서 이용된 통계적 방법보다 높게 나타나 폴리우레탄 코팅포의 촉감예측에 신경망의 이용은 효과적인 것으로 밝혀졌다.

  • PDF

Teaching-learning-based strategy to retrofit neural computing toward pan evaporation analysis

  • Rana Muhammad Adnan Ikram;Imran Khan;Hossein Moayedi;Loke Kok Foong;Binh Nguyen Le
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.37-47
    • /
    • 2023
  • Indirect determination of pan evaporation (PE) has been highly regarded, due to the advantages of intelligent models employed for this objective. This work pursues improving the reliability of a popular intelligent model, namely multi-layer perceptron (MLP) through surmounting its computational knots. Available climatic data of Fresno weather station (California, USA) is used for this study. In the first step, testing several most common trainers of the MLP revealed the superiority of the Levenberg-Marquardt (LM) algorithm. It, therefore, is considered as the classical training approach. Next, the optimum configurations of two metaheuristic algorithms, namely cuttlefish optimization algorithm (CFOA) and teaching-learning-based optimization (TLBO) are incorporated to optimally train the MLP. In these two models, the LM is replaced with metaheuristic strategies. Overall, the results demonstrated the high competency of the MLP (correlations above 0.997) in the presence of all three strategies. It was also observed that the TLBO enhances the learning and prediction accuracy of the classical MLP (by nearly 7.7% and 9.2%, respectively), while the CFOA performed weaker than LM. Moreover, a comparison between the efficiency of the used metaheuristic optimizers showed that the TLBO is a more time-effective technique for predicting the PE. Hence, it can serve as a promising approach for indirect PE analysis.

Optimized ANNs for predicting compressive strength of high-performance concrete

  • Moayedi, Hossein;Eghtesad, Amirali;Khajehzadeh, Mohammad;Keawsawasvong, Suraparb;Al-Amidi, Mohammed M.;Van, Bao Le
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.867-882
    • /
    • 2022
  • Predicting the compressive strength of concrete (CSoC) is of high significance in civil engineering. The CSoC is a highly dependent and non-linear parameter that requires powerful models for its simulation. In this work, two novel optimization techniques, namely evaporation rate-based water cycle algorithm (ER-WCA) and equilibrium optimizer (EO) are employed for optimally finding the parameters of a multi-layer perceptron (MLP) neural processor. The efficiency of these techniques is examined by comparing the results of the ensembles to a conventionally trained MLP. It was observed that the ER-WCA and EO optimizers can enhance the training accuracy of the MLP by 11.18 and 3.12% (in terms of reducing the root mean square error), respectively. Also, the correlation of the testing results climbed from 78.80% to 82.59 and 80.71%. From there, it can be deduced that both ER-WCA-MLP and EO-MLP can be promising alternatives to the traditional approaches. Moreover, although the ER-WCA enjoys a larger accuracy, the EO was more efficient in terms of complexity, and consequently, time-effectiveness.

대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상 (Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow)

  • 이원진;이의훈
    • 한국수자원학회논문집
    • /
    • 제56권1호
    • /
    • pp.63-74
    • /
    • 2023
  • 높은 신뢰도의 댐 유입량 예측은 효율적인 댐 운영을 위해 필요하다. 최근 다층퍼셉트론(Multi Layer Perceptron, MLP)을 활용하여 댐의 유입량을 예측하는 연구들이 진행되었다. 기존 연구들은 MLP의 연산자 중 자료 간의 최적 상관관계를 찾는 optimizer로 경사하강법(Gradient Descent, GD) 기반의 optimizer를 사용하였다. 하지만, GD 기반의 optimizer들은 지역 최적값으로의 수렴 가능성과 저장공간 부재로 인해 예측성능이 저하된다는 단점이 있다. 본 연구는 GD 기반 optimizer 중 Adaptive moments와 Improved Harmony Search (IHS)를 결합한 Adaptive moments combined with Improved Harmony Search (AdamIHS)를 개발하여 GD 기반 optimizer의 단점을 개선하였다. AdamIHS를 사용한 MLP의 학습 및 예측성능을 평가하기 위해 대청댐 유입량을 학습 및 예측하였으며, GD 기반 optimizer를 사용한 MLP의 학습 및 예측성능과 비교하였다. 학습결과를 비교하면, AdamIHS를 사용한 은닉층 5개인 MLP의 Mean Squared Error (MSE) 평균값이 11,577로 가장 낮았다. 예측결과를 비교하면, AdamIHS를 사용한 은닉층 1개인 MLP의 MSE 평균값이 413,262로 가장 낮았다. 본 연구에서 개발된 AdamIHS를 활용하면 다양한 분야에서 향상된 예측성능을 보여줄 수 있을 것이다.

MLP에 기반한 감정인식 모델 개발 (Development of Emotion Recognition Model based on Multi Layer Perceptron)

  • 이동훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.372-377
    • /
    • 2006
  • 본 논문에서, 우리는 뇌파를 이용하여 사용자의 감정을 인식하는 감정인식 모델을 제안한다. 사용자의 감정을 인식하기 위해서는 우선 생체 데이터나 감정 데이터를 포함한 뇌파의 정량적인 데이터를 획득하는 방법이 필요하며 다음으로 획득된 뇌파를 통하여 현재 사용자의 감정 상태를 규명하는 패턴인식 기법이 중요한 문제가 된다. 본 논문에서는 뇌파를 통하여 현재 사용자의 감정 상태를 규명하고 인식할 수 있는 패턴인식 기법으로 Multi Layer Perceptron(MLP)을 사용한 패턴인식 기법을 사용한다. 본 논문에서 제안한 감정인식 모델의 실험을 위하여 특정 공간 내에서 여러 피험자의 감정별 뇌파를 측정하고, 측정된 뇌파로 집중도 및 안정도를 도출하여 유의미한 데이터로 감정 DB를 구축한다. 감정별 DB를 본 논문에서 제안한 감정인식 모델로 학습한 후 새로운 사용자의 뇌파로 현재 사용자의 감정을 인식한다. 마지막으로 피험자의 수와 은닉 노드의 수에 따른 인식률의 변화를 측정함으로서 뇌파를 이용한 감정인식 모델의 성능을 평가한다.

퍼지 하이브리드 다층 퍼셉트론구조의 최적설계 (Optimal Design of Fuzzy Hybrid Multilayer Perceptron Structure)

  • 김동원;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2977-2979
    • /
    • 2000
  • A Fuzzy Hybrid-Multilayer Perceptron (FH-MLP) Structure is proposed in this paper. proposed FH-MLP is not a fixed architecture. that is to say. the number of layers and the number of nodes in each layer of FH-MLP can be generated to adapt to the changing environment. FH-MLP consists of two parts. one is fuzzy nodes which each node is operated as a small fuzzy system with fuzzy implication rules. and its fuzzy system operates with Gaussian or Triangular membership functions in premise part and constants or regression polynomial equation in consequence part. the other is polynomial nodes which several types of high-order polynomial such as linear. quadratic. and cubic form are used and is connected as various kinds of multi-variable inputs. To demonstrate the effectiveness of the proposed method. time series data for gas furnace process has been applied.

  • PDF

FORECAST OF SOLAR PROTON EVENTS WITH NOAA SCALES BASED ON SOLAR X-RAY FLARE DATA USING NEURAL NETWORK

  • Jeong, Eui-Jun;Lee, Jin-Yi;Moon, Yong-Jae;Park, Jongyeop
    • 천문학회지
    • /
    • 제47권6호
    • /
    • pp.209-214
    • /
    • 2014
  • In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural network method. The combinations of X-ray flare class, impulsive time, and location are used for input data. For this study we make a number of trials by changing the number of layers and nodes as well as combinations of the input data. To find the best model, we use the summation of F-scores weighted by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive value), in order to minimize both misses and false alarms. We find that the MLP models are much better than the multiple linear regression model and one layer MLP model gives the best result.