• 제목/요약/키워드: MLKL

검색결과 8건 처리시간 0.011초

TNF 신호전달에서 RIPK와 MLKL의 기능적 생리적 특성 (Functional and Physiological Characteristic of RIPK and MLKL in TNF Signaling)

  • 박영훈;정미숙;장세복
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.868-874
    • /
    • 2016
  • 수용체 상호작용 단백질 인산화 효소 RIPK1 (Receptor-interacting protein kinases 1)과 RIPK3은 고도로 보존된 인산화 효소 부위를 통하여 세린이나 트레오닌의 하이드록실기를 인산화하는 세린 또는 트레오닌-단백질 인산화 효소 군에 속한다. RIPK군은 염증이나 선천성 면역뿐 만 아니라 세포사멸이나 괴사와 같은 프로그램화된 세포사 멸을 중재하는데 중요한 역할을 담당한다. RIPK1과 다른 TNFR1 관련 단백질들의 상호작용은 TNF 수용체 1(TNFR1)에 사이토카인이 결합할 때 생존 촉진 전사인자 NF-κB의 활성을 조절하는 신호전달복합체 I을 조립하는 것으로 알려져 왔다. 뿐만 아니라, RIPK1과 RIPK3은 프로그램화된 세포괴사를 중재하는 RIP 동형 상호작용 모티브(RHIM)를 통하여 상호작용하고, 이러한 괴사는 세포사멸의 유형과는 다른 형태학적 특징을 가진 돌발적이고 제어되지 않는 세포사멸 유형으로 오랫동안 알려져 왔다. RIPK1과 RIPK3에 존재하는 RHIM의 고도로 보존된 서열들이 이들의 상호작용을 조절하며 이들은 necrosome이라 불리는 세포질 내 아밀로이드 복합체의 조립을 유도 한다. 또한 necrosome은 최근에 하위 신호전달을 조절하는 RIPK3의 기질로 확인된 혼합형 인산화 효소 도메인-유사 단백질(MLKL)을 포함한다. 본 리뷰는 TNF 신호전달에서 RIPK와 MLKL의 기능적, 생리적 특징들에 관한 개요를 제공한다.

Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis

  • Zhang, Yuan-Yuan;Liu, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7069-7074
    • /
    • 2013
  • Programmed cell death is a basic cellular process that is critical to maintaining tissue homeostasis. In contrast to apoptosis, necrosis was previously regarded as an unregulated and uncontrollable process. However, as research has progressed, necrosis, also known as necroptosis or programmed necrosis, is drawing increasing attention, not least becasu of its possible impications for cancer research. Necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinases 1 and 3 (RIP1 and RIP3), mixed lineage kinase domain-like (MLKL), and phosphoglycerate mutase 5 (PGAM5) and can be specifically inhibited by necrostatins. Not only does necroptosis serve as a backup cell death program when apoptosis is inhibited, but it is now recognized to play a pivotal role in regulating various physiological processes and the pathogenesis of a variety of human diseases such as ischemic brain injury, immune system disorders and cancer. The control of necroptosis by various defined trigger factors and signaling pathways now offers the opportunity to target this cellular process for therapeutic purposes. The purpose of this paper is to review current findings concerning the connections between various trigger factors and the RIP1/RIP3 signaling pathway as it relates to necroptosis.

차세대염기서열분석 데이터 기반으로 선별한 전복(Haliotis discus hannai) 유래 신규 펩타이드의 항암 효과 (Anticancer Effect of Novel Peptide from Abalone (Haliotis discus hannai) based on Next Generation Sequencing Data)

  • 문현혜;황보전;비라판 칼파감;사티시쿠마 나타라잔;정호용;박준형
    • 한국해양생명과학회지
    • /
    • 제7권1호
    • /
    • pp.15-20
    • /
    • 2022
  • 본 연구는 우리나라 해안에서 널리 서식 중인 해양 자원 중 하나인 전복(Haliotis discus hannai)의 차세대염기서열분석 데이터 기반으로 선별한 신규 펩타이드의 항암 활성을 평가한 연구이다. 펩타이드의 항암 활성은 교모세포종 세포주인 SNU-489에서 농도 의존적으로 처리 시간에 비례하여 증가하였으며, 200 µM로 48시간 처리하였을 때 암 세포 사멸율이 67%로 가장 높게 나타났다. 반면 정상 세포인 HaCaT에서 가장 높은 세포 사멸율은 18%로 농도 의존적이었으나 처리 시간과는 무관하였다. 또한 신규 펩타이드의 항암 메커니즘 과정을 밝히기 위해 세포자멸괴사(Necroptosis) 관련 유전자의 발현 변화를 qRT-PCR 방법을 통해 검증하였다. RIPK3는 신규 펩타이드 처리군에서 200 µM 처리 시 9배 이상 발현 증가, MLKL는 100 µM 처리군에서 대조군 대비 2배 이상 유의미하게 발현이 증가되었다. 이러한 결과로 미루어 볼 때, 전복 유래 신규 펩타이드는 암 세포 특이적으로 세포 독성을 가지며, 세포자멸괴사 메커니즘을 통해 암세포 사멸을 일으키는 것으로 추측되므로 신규 펩타이드가 추후 교모세포종 치료제의 후보 물질로 활용될 수 있을 것으로 사료된다.

Impairment of Mitochondrial ATP Synthesis Induces RIPK3-dependent Necroptosis in Lung Epithelial Cells During Lung Injury by Lung Inflammation

  • Su Hwan Lee;Ju Hye Shin;Min Woo Park;Junhyung Kim;Kyung Soo Chung;Sungwon Na;Ji-Hwan Ryu;Jin Hwa Lee;Moo Suk Park;Young Sam Kim;Jong-Seok Moon
    • IMMUNE NETWORK
    • /
    • 제22권2호
    • /
    • pp.18.1-18.15
    • /
    • 2022
  • Dysfunction of mitochondrial metabolism is implicated in cellular injury and cell death. While mitochondrial dysfunction is associated with lung injury by lung inflammation, the mechanism by which the impairment of mitochondrial ATP synthesis regulates necroptosis during acute lung injury (ALI) by lung inflammation is unclear. Here, we showed that the impairment of mitochondrial ATP synthesis induces receptor interacting serine/threonine kinase 3 (RIPK3)-dependent necroptosis during lung injury by lung inflammation. We found that the impairment of mitochondrial ATP synthesis by oligomycin, an inhibitor of ATP synthase, resulted in increased lung injury and RIPK3 levels in lung tissues during lung inflammation by LPS in mice. The elevated RIPK3 and RIPK3 phosphorylation levels by oligomycin resulted in high mixed lineage kinase domain-like (MLKL) phosphorylation, the terminal molecule in necroptotic cell death pathway, in lung epithelial cells during lung inflammation. Moreover, the levels of protein in bronchoalveolar lavage fluid (BALF) were increased by the activation of necroptosis via oligomycin during lung inflammation. Furthermore, the levels of ATP5A, a catalytic subunit of the mitochondrial ATP synthase complex for ATP synthesis, were reduced in lung epithelial cells of lung tissues from patients with acute respiratory distress syndrome (ARDS), the most severe form of ALI. The levels of RIPK3, RIPK3 phosphorylation and MLKL phosphorylation were elevated in lung epithelial cells in patients with ARDS. Our results suggest that the impairment of mitochondrial ATP synthesis induces RIPK3-dependent necroptosis in lung epithelial cells during lung injury by lung inflammation.

Regulation of RIP3 protein stability by PELI1-mediated proteasome-dependent degradation

  • Park, Han-Hee;Morgan, Michael J.;Kang, Ho Chul;Kim, You-Sun
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.484-485
    • /
    • 2018
  • Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is a serine-threonine kinase largely essential for necroptotic cell death; it also plays a role in some inflammatory diseases. High levels of RIP3 are likely sufficient to activate necroptotic and inflammatory pathways downstream of RIP3 in the absence of an upstream stimulus. For example, we have previously detected high levels or RIP3 in the skin of Toxic Epidermal Necrolysis patients; this correlates with increased phosphorylation of MLKL found in these patients. We have long surmised that there are molecular mechanisms to prevent anomalous activity of the RIP3 protein, and so prevent undesirable cell death and inflammatory effects when inappropriately activated. Recent discovery that Carboxyl terminus of Hsp 70-Interacting Protein (CHIP) could mediate ubiquitylation- and lysosome-dependent RIP3 degradation provides a potential protein that has this capacity. However, while screening for RIP3-binding proteins, we discovered that pellino E3 ubiquitin protein ligase 1 (PELI1) also interacts directly with RIP3 protein; further investigation in this study revealed that PELI1 also targets RIP3 for proteasome-dependent degradation. Interestingly, unlike CHIP, which targets RIP3 more generally, PELI1 preferentially targets kinase active RIP3 that has been phosphorylated on T182, subsequently leading to RIP3 degradation.

Thymol Ameliorates Aspergillus fumigatus Keratitis by Downregulating the TLR4/ MyD88/ NF-kB/ IL-1β Signal Expression and Reducing Necroptosis and Pyroptosis

  • Limei Wang;Haijing Yan;Xiaomeng Chen;Lin Han;Guibo Liu;Hua Yang;Danli Lu;Wenting Liu;Chengye Che
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권1호
    • /
    • pp.43-50
    • /
    • 2023
  • Fungal keratitis is a refractory kind of keratopathy. We attempted to investigate the antiinflammatory role of thymol on Aspergillus fumigatus (A. fumigatus) keratitis. Wound healing and fluorescein staining of the cornea were applied to verify thymol's safety. Mice models of A. fumigatus keratitis underwent subconjunctival injection of thymol. The anti-inflammatory roles of thymol were verified by hematoxylin-eosin (HE) staining, slit lamp observation, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. In contrast with the DMSO group, more transparent corneas and less inflammatory cells infiltration were detected in mice treated with 50 ㎍/ml thymol. Thymol downregulated the synthesis of TLR4, MyD88, NF-kB, IL-1β, NLRP3, caspase 1, caspase 8, GSDMD, RIPK3 and MLKL. In summary, we proved that thymol played a protective part in A. fumigatus keratitis by cutting down inflammatory cells aggregation, downregulating the TLR4/ MyD88/ NF-kB/ IL-1β signal expression and reducing necroptosis and pyroptosis.

Cobalt Chloride Induces Necroptosis in Human Colon Cancer HT-29 Cells

  • Wang, Hai-Yu;Zhang, Bo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권6호
    • /
    • pp.2569-2574
    • /
    • 2015
  • Necroptosis, also known as "programmed necrosis", has emerged as a critical factor in a variety of pathological and physiological processes and is considered a cell type-specific tightly regulated process with mechanisms that may vary rather greatly due to the change of cell line. Here we used HT-29, a human colon cancer cell line, to establish a necroptosis model and elucidate associated mechanisms. We discovered that cobalt chloride, a reagent that could induce hypoxia-inducible $factor-1{\alpha}(HIF1{\alpha})$ expression and therefore mimic the hypoxic microenvironment of tumor tissue in some aspects induces necroptosis in HT-29 cells when caspase activity is compromised. On the other hand, apoptosis appears to be the predominant death form when caspases are functioning normally. HT-29 cells demonstrated significantly increased RIPK1, RIPK3 and MLKL expression in response to cobalt chloride plus z-VAD treatment, which was accompanied by drastically increased $IL1{\alpha}$ and IL6 expression, substantiating the notion that necrosis can induce profound immune reactions. The RIPK1 kinase inhibitor necrostatin-1 and the ROS scavenger NAC each could prevent necrosis in HT-29 cells and the efficiency was enhanced by combined treatment. Thus by building up a necroptosis model in human colon cancer cells, we uncovered that mechanically RIP kinases collaborate with ROS during necrosis promoted by cobalt chloride plus z-VAD, which leads to inflammation. Necroptosis may present a new target for therapeutic intervention in cancer cells that are resistant to apoptotic cell death.

Apigenin causes necroptosis by inducing ROS accumulation, mitochondrial dysfunction, and ATP depletion in malignant mesothelioma cells

  • Lee, Yoon-Jin;Park, Kwan-Sik;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.493-502
    • /
    • 2020
  • Apigenin, a naturally occurring flavonoid, is known to exhibit significant anticancer activity. This study was designed to determine the effects of apigenin on two malignant mesothelioma cell lines, MSTO-211H and H2452, and to explore the underlying mechanism(s). Apigenin significantly inhibited cell viability with a concomitant increase in intracellular reactive oxygen species (ROS) and caused the loss of mitochondrial membrane potential (ΔΨm), and ATP depletion, resulting in apoptosis and necroptosis in monolayer cell culture. Apigenin upregulated DNA damage response proteins, including the DNA double strand break marker phospho (p)-histone H2A.X. and caused a transition delay at the G2/M phase of cell cycle. Western blot analysis showed that apigenin treatment upregulated protein levels of cleaved caspase-3, cleaved PARP, p-MLKL, and p-RIP3 along with an increased Bax/Bcl-2 ratio. ATP supplementation restored cell viability and levels of DNA damage-, apoptosisand necroptosis-related proteins that apigenin caused. In addition, N-acetylcysteine reduced ROS production and improved ΔΨm loss and cell death that were caused by apigenin. In a 3D spheroid culture model, ROS-dependent necroptosis was found to be a mechanism involved in the anti-cancer activity of apigenin against malignant mesothelioma cells. Taken together, our findings suggest that apigenin can induce ROS-dependent necroptotic cell death due to ATP depletion through mitochondrial dysfunction. This study provides us a possible mechanism underlying why apigenin could be used as a therapeutic candidate for treating malignant mesothelioma.