Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.7.868

Functional and Physiological Characteristic of RIPK and MLKL in TNF Signaling  

Park, Young-Hoon (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Jeong, Mi Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Jang, Se Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.26, no.7, 2016 , pp. 868-874 More about this Journal
Abstract
Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are members of the serine or threonine protein kinase superfamily that phosphorylates the hydroxyl group of serine or threonine through the highly conserved kinase region. The RIPK family plays a crucial role not only in inflammation and innate immunity, but also in mediating programmed cell death, such as apoptosis and necroptosis. The interaction between RIPK1 and other TNFR1-related proteins has been shown to assemble a signaling complex I that controls activation of the pro-survival transcription factor NF-κB upon binding of cytokines to TNF receptor 1 (TNFR1). Moreover, RIPK1 and RIPK3 interact through their RIP homotypic interaction motifs (RHIMs) to mediate programmed necrosis, which has long been considered an accidental and uncontrolled cell death form with morphological characteristics differing from those of apoptosis. Highly conserved sequences of RHIM in RIPK1 and RIPK3 were shown to regulate their binary interaction, leading to assembly of a cytosolic amyloid complex termed the “necrosome”. The necrosome also contains mixed lineage kinase domain-like protein (MLKL), which has been found recently to be a substrate of RIPK3 to mediate downstream signaling. This review provides an overview of the functional and physiological characteristics of RIPKs and MLKL in TNF signaling.
Keywords
MLKL; programmed cell death; RHIM; RIPK; TNF signaling;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rebsamen, M., Heinz, L. X., Meylan, E., Michallet, M. C., Schroder, K., Hofmann, K., Vazquez, J., Benedict, C. A. and Tschopp, J. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-κB. EMBO Rep. 10, 916-922.   DOI
2 Schleich, K., Warnken, U., Fricker, N., Öztürk, S., Richter, P., Kammerer, K., Schnölzer, M., Krammer, P. H. and Lavrik, I. N. 2012. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol. Cell 47, 306-319.   DOI
3 Schneider-Brachert, W., Tchikov, V., Neumeyer, J., Jakob, M., Winoto-Morbach, S., Held-Feindt, J., Heinrich, M., Merkel, O., Ehrenschwender, M., Adam, D., Mentlein, R., Kabelitz, D. and Schütze, S. 2004. Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415-428.
4 Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W. and Lei, X. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227.   DOI
5 Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., Zachariou, A., Lopez, J., MacFarlane, M., Cain, K. and Meier, P. 2011. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432-448.   DOI
6 Trichonas, G., Murakami, Y., Thanos, A., Morizane, Y., Kayama, M., Debouck, C. M., Hisatomi, T., Miller, J. M. and Vavvas, D. G. 2010. Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis. Proceedings of the Proc. Natl. Acad. Sci. USA 107, 21695-21700.   DOI
7 Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W. and Vandenabeele, P. 1998. Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919-930.   DOI
8 Vercammen, D., Vandenabeele, P., Beyaert, R., Declercq, W. and Fiers, W. 1997. Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9, 801-808.   DOI
9 Verhelst, K., Carpentier, I., Kreike, M., Meloni, L., Verstrepen, L., Kensche, T., Dikic, I. and Beyaert, R. 2012. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845-3855.   DOI
10 Wang, H., Sun, L., Su, L., Rizo, J., Liu, L., Wang, L. F., Wang, F. S. and Wang, X. 2014. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133-146.   DOI
11 Wang, L., Du, F. and Wang, X. 2008. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693-703.   DOI
12 Willingham, S. B., Bergstralh, D. T., O′Connor, W., Morrison, A. C., Taxman, D. J., Duncan, J. A., Barnoy, S., Venkatesan, M. M., Flavell, R. A., Deshmukh, M., Hoffman, H. M. and Ting, J. P. Y. 2007. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2, 147-159.   DOI
13 Wu, Z. H., Wong, E. T., Shi, Y., Niu, J., Chen, Z., Miyamoto, S. and Tergaonkar, V. 2010 ATM-and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol. Cell 40, 75-86.   DOI
14 Brown, S., Heinisch, I., Ross, E., Shaw, K., Buckley, C. D. and Savill, J. 2002. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200-203.   DOI
15 Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. and Han, J. 2009. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336.   DOI
16 Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J. and Liu, Z. G. 2012. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl. Acad. Sci. USA 109, 5322-5327.   DOI
17 Acehan, D., Jiang, X., Morgan, D. G., Heuser, J. E., Wang, X. and Akey, C. W. 2002. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423-432.   DOI
18 Berghe, T. V., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. and Vandenabeele, P. 2014. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15, 135-147.
19 Bertrand, M. J., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J. and Barker, P. A. 2008. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689-700.   DOI
20 Brady, S. W., Zhang, J., Tsai, M. H. and Yu, D. 2015. PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition. Cancer Biol. Ther. 16, 402-411.   DOI
21 Cai, Z., Jitkaew, S., Zhao, J., Chiang, H. C., Choksi, S., Liu, J., Ward, Y., Wu, L. G. and Liu, Z. G. 2014. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat. Cell Biol. 16, 55-65.
22 Chen, G. and Goeddel, D. V. 2002. TNF-R1 signaling: a beautiful pathway. Science 296, 1634-1635.   DOI
23 Chen, X., Li, W., Ren, J., Huang, D., He, W. T., Song, Y., Yang, C., Li, W., Zheng, X., Chen, P. and Han, J. 2014. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105-121.   DOI
24 Cho, Y., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. M. 2009. Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123.   DOI
25 Chowdhury, D. and Lieberman, J. 2008. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu. Rev. Immunol. 26, 389.   DOI
26 Draber, P., Kupka, S., Reichert, M., Draberova, H., Lafont, E., de Miguel, D., Spilgies, L., Surinova, S., Taraborrelli, L., Hartwig, T., Rieser, E., Martino, L., Rittinger, K. and Rieser, E. 2015. LUBAC-Recruited CYLD and A20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep. 13, 2258-2272.   DOI
27 Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. and Yuan, J. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112-119.   DOI
28 Devin, A., Lin, Y. and Liu, Z. G. 2003. The role of the deathdomain kinase RIP in tumour-necrosis-factor-induced activation of mitogen-activated protein kinases. EMBO Rep. 4, 623-627.   DOI
29 Dickens, L. S., Boyd, R. S., Jukes-Jones, R., Hughes, M. A., Robinson, G. L., Fairall, L., Schwabe, J. W. R., Cain, K. and MacFarlane, M. 2012. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol. Cell 47, 291-305.   DOI
30 Dynek, J. N., Goncharov, T., Dueber, E. C., Fedorova, A. V., Izrael-Tomasevic, A., Phu, L., Helgason, E., Fairbrother, W. J., Deshayes, K., Kirkpatrick, D. S. and Vucic, D. 2010. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198-4209.   DOI
31 Elmore, S. 2007. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516.   DOI
32 Feig, C. and Peter, M. E. 2007. How apoptosis got the immune system in shape. Eur. J. Immunol. 37, S61-S70.   DOI
33 He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L. and Wang, X. 2009. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100-1111.   DOI
34 Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Häcker, G. and Leverkus, M. 2011. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463   DOI
35 Gao, Z., Hwang, D., Bataille, F., Lefevre, M., York, D., Quon, M. J. and Ye, J. 2002. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem. 277, 48115-48121.   DOI
36 Haas, T. L., Emmerich, C. H., Gerlach, B., Schmukle, A. C., Cordier, S. M., Rieser, E., Feltham, R., Vince, J., Warnken, U., Wenger, T., Koschny, R., Komander, D., Silke, J. and Walczak H. 2009. Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol. Cell 36, 831-844.   DOI
37 Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B. and Tschopp, J. 2000. Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489-495.   DOI
38 Humphries, F., Yang, S., Wang, B. and Moynagh, P. N. 2015 RIP kinases: key decision makers in cell death and innate immunity. Cell Death Differ. 22, 225-236.   DOI
39 Hunter, I. and Nixon, G. F. 2006. Spatial compartmentalization of tumor necrosis factor (TNF) receptor 1-dependent signaling pathways in human airway smooth muscle cells. Lipid rafts are essential for TNF-alpha-mediated activation of RhoA but dispensable for the activation of the NF-kappaB and MAPK pathways. J. Biol. Chem. 281, 34705-34715.   DOI
40 Kalai, M., Van Loo, G., Vanden Berghe, T., Meeus, A., Burm, W., Saelens, X. and Vandenabeele, P. 2002. Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981-994.   DOI
41 Li, J., McQuade, T., Siemer, A. B., Napetschnig, J., Moriwaki, K., Hsiao, Y. S., Damko, E., Moquin, D., Walz, T., McDermott, A., Chan, F. K. M. and Wu, H. 2012. The RIP1/ RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339-350.   DOI
42 Linkermann, A., Bräsen, J. H., Darding, M., Jin, M. K., Sanz, A. B., Heller, J., Zena, F. D., Weinlichf, R., Ortize, A., Walczakd, H., Weinbergg, J. M., Greenf, D., R., Kunzendorf, U. and Weinberg, J. M. 2013. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc. Natl. Acad. Sci. USA 110, 12024-12029.   DOI
43 Ma, Y., Temkin, V., Liu, H. and Pope, R. M. 2005. NF-κB Protects Macrophages from Lipopolysaccharide-induced cell death: the role of caspase 8 and receptor-interacting protein. J. Biol. Chem. 280, 41827-41834.   DOI
44 McDermott, M. F., Aksentijevich, I., Galon, J., McDermott, E. M., Ogunkolade, B. W., Centola, M., Elizabeth Mansfield2, Gadina, M., Karenko, L., Pettersson, T., McCarthy, J., Frucht, D. M., Aringer, M., Torosyan, Y., Teppo, A. M., Wilson, M., Karaarslan, H. M., Wan, Y., Todd, I., Wood, G., Schlimgen, R., Kumarajeewa, T. R., Cooper, S. M., Vella, J. P., Amos, C. I., Mulley, J., Quane, K. A. and McCarthy, J. 1999. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133-144.   DOI
45 Moquin, D. M., McQuade, T. and Chan, F. K. M. 2013. CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PloS One 8, e76841.   DOI
46 Michallet, M. C., Meylan, E., Ermolaeva, M. A., Vazquez, J., Rebsamen, M., Curran, J., Poeck, H., Bscheider, M., Hartmann, G., König, M., Kalinke, U., Pasparakis, M. and Tschopp, J. 2008. TRADD protein is an essential component of the RIG-like helicase antiviral pathway. Immunity 28, 651-661.   DOI
47 Micheau, O. and Tschopp, J. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190.   DOI
48 Mocarski, E. S., Upton, J. W. and Kaiser, W. J. 2012. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat. Rev. Immunol. 12, 79-88.
49 Opferman, J. T. and Korsmeyer, S. J. 2003. Apoptosis in the development and maintenance of the immune system. Nat. Immunol. 4, 410-415.   DOI
50 Park, Y. H., Jeong, M. S. and Jang, S. B. 2014. Death domain complex of the TNFR-1, TRADD, and RIP1 proteins for death-inducing signaling. Biochem. Biophys. Res. Commun. 443, 1155-1161.   DOI
51 Park, Y. H., Jeong, M. S. and Jang, S. B. 2016. Structural insights of homotypic interaction domains in the TNF ligand-receptor signal transduction. BMB Rep. 49, 159-166.   DOI
52 Park, Y. H., Jeong, M. S., Park, H. H. and Jang, S. B. 2013. Formation of the death domain complex between FADD and RIP1 proteins in vitro. BBA-Proteins Proteom. 1834, 292-300.   DOI