• Title/Summary/Keyword: MLD (Mixed Layer Depth)

Search Result 13, Processing Time 0.017 seconds

On Conditions of Phytoplankton Blooms in the Coastal Waters of the North-Western East/Japan Sea

  • Zuenko, Yury;Selina, Marina;Stonik, Inna
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.31-41
    • /
    • 2006
  • Seasonal changes of abundance of the main phytoplankton groups of species (diatoms, dinoflagellates, chrysophytes, small flagellates and cryptophytes) and a set of environmental parameters were investigated in coastal and pre-estuarine waters of Peter the Great Bay (East/Japan Sea) in May-October of 1998 and 1999. Three periods of mass development were revealed: spring, summer and autumn blooms, with successive change of species. The conditions favourable for each group of species were determined. Driving mechanisms of the succession include nutrients transport through seasonal pycnocline by turbulent mixing, terrestrial nutrients supply by monsoon floods, nutrients supply by upwellings, and light control by the thickness of upper mixed layer. Summer succession could be explained by a simple SST-MLD diagram similar to Pingree S-kh diagram with sea surface temperature as indicator of stratification (S) and mixed layer depth as indicator of light availability (kh).

Descriptive Analysis of Low Saline Water in Youngdeuk, the East Coast of Korea in 2010 (2010년 동해 영덕 연안의 저염수)

  • Choi, Yong-Kyu;Kwon, Kee-Young;Yang, Joon-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.379-387
    • /
    • 2012
  • In order to see the oceanographic conditions, the observations of aquaculture farm of ascidian in Youngdeuk, the east coast of Korea were conducted through 6 times-23 February, 6 April, 8 June, 19 August, 6 October and 20 December-in 2010. Surveys were conducted in 20 stations bimonthly using SBE 19 CTD instrument. The mixed layer depth (MLD) was deep in winter and shallow in summer. The cold water below $5^{\circ}C$ in temperature was occupied below thermocline through all season. The temperature was high in the southeastern area. The salinity was increased from the coast to the open sea. The halocline was distinct at 20 m depth in August and at 40 m depth in October. The lowest value of salinity was appeared at the depth of 10 m in October. In addition the value of precipitation minus evaporation denoted negative in October. These low saline water seemed to inflow to the coast from the open sea. Therefore the low saline water moved to the east coast of Korea. The EKWC may play an important role to convey the low saline water. It may affect the aquaculture farm along the coast as the mass mortality of ascidian. It needs to clarify the role and pathway of EKWC to transfer the low saline water along the east coast of Korea.

Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques (기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정)

  • HAHM, DOSHIK;PARK, SOYEONA;CHOI, SANG-HWA;KANG, DONG-JIN;RHO, TAEKEUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • Accurate evaluation of sea-to-air $CO_2$ flux and its variability is crucial information to the understanding of global carbon cycle and the prediction of atmospheric $CO_2$ concentration. $fCO_2$ observations are sparse in space and time in the East Sea. In this study, we derived high resolution time series of surface $fCO_2$ values in the southwest East Sea, by feeding sea surface temperature (SST), salinity (SSS), chlorophyll-a (CHL), and mixed layer depth (MLD) values, from either satellite-observations or numerical model outputs, to three machine learning models. The root mean square error of the best performing model, a Random Forest (RF) model, was $7.1{\mu}atm$. Important parameters in predicting $fCO_2$ in the RF model were SST and SSS along with time information; CHL and MLD were much less important than the other parameters. The net $CO_2$ flux in the southwest East Sea, calculated from the $fCO_2$ predicted by the RF model, was $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$, close to the lower bound of the previous estimates in the range of $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$. The time series of $fCO_2$ predicted by the RF model showed a significant variation even in a short time interval of a week. For accurate evaluation of the $CO_2$ flux in the Ulleung Basin, it is necessary to conduct high resolution in situ observations in spring when $fCO_2$ changes rapidly.