• Title/Summary/Keyword: MIT-BIH

Search Result 144, Processing Time 0.026 seconds

Minimizing Algorithm of Baseline Wander for ECG Signal using Morphology-pair (Morphology-pair를 이용한 심전도 신호의 기저선 변동 잡음 제거 알고리즘)

  • Kim, Sung-Wan;Kim, Se-Yun;Kim, Tae-Hun;Choi, Byung-Jae;Park, Kil-Houm
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.574-579
    • /
    • 2010
  • The baseline wander is most fatal noise, because it obstructs reliable diagnosis of cardiac disorder. Thus, in this paper, the morphology-pair is proposed for estimation of baseline wander except P, T-wave and QRS-complex. Proposed Morphology-pair is able to except P, R, T-wave which have characteristics of local maxima. Likewise Q, S-wave such as local minima are excepted by proposed Morphology-pair. The final baseline wander eliminated ECG signal is deducted by subtraction of original ECG and estimated baseline wander. The experimental results based on the MIT/BIH database show that the proposed algorithms produce promising results.

Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine (Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong;Kim, Joo-man;Kim, Seon-jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.2
    • /
    • pp.117-126
    • /
    • 2019
  • Legacy study for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods are complex to process and manipulate data and have difficulties in classifying various arrhythmias. Therefore it is necessary to classify various arrhythmia based on short-term data. In this study, we propose a feature extraction based on auto regressive modeling and an premature contraction arrhythmia classification method using SVM., For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. Also, we classified Normal, PVC, PAC through SVM in realtime by extracting four optimal segment length and AR order. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 99.23%, 97.28%, 96.62% in Normal, PVC, PAC classification.

Adaptive Processing Algorithm Allocation on OpenCL-based FPGA-GPU Hybrid Layer for Energy-Efficient Reconfigurable Acceleration of Abnormal ECG Diagnosis (비정상 ECG 진단의 에너지 효율적인 재구성 가능한 가속을 위한 OpenCL 기반 FPGA-GPU 혼합 계층 적응 처리 알고리즘 할당)

  • Lee, Dongkyu;Lee, Seungmin;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1279-1286
    • /
    • 2021
  • The electrocardiogram (ECG) signal is a good indicator for early diagnosis of heart abnormalities. The ECG signal has a different reference normal signal for each person. And it requires lots of data to diagnosis. In this paper, we propose an adaptive OpenCL-based FPGA-GPU hybrid-layer platform to efficiently accelerate ECG signal diagnosis. As a result of diagnosing 19870 number of ECG signals of MIT-BIH arrhythmia database on the platform, the FPGA accelerator takes 1.15s, that the execution time was reduced by 89.94% and the power consumption was reduced by 84.0% compared to the software execution. The GPU accelerator takes 1.87s, that the execution time was reduced by 83.56% and the power consumption was reduced by 62.3% compared to the software execution. Although the proposed FPGA-GPU hybrid platform has a slower diagnostic speed than the FPGA accelerator, it can operate a flexible algorithm according to the situation by using the GPU.

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection (심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1542-1550
    • /
    • 2019
  • Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.

Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning (AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1341-1347
    • /
    • 2020
  • Legacy studies for classifying arrhythmia have been studied in order to improve the accuracy of classification, Neural Network, Fuzzy, Machine Learning, etc. In particular, deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose parameter extraction based on AR and arrhythmia classification through a deep learning. For this purpose, the R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The classification rate of PVC is evaluated through MIT-BIH arrhythmia database. The achieved scores indicate arrhythmia classification rate of over 97%.

Design of Arrhythmia Classification System Based on 1-D Convolutional Neural Networks (1차원 합성곱 신경망에 기반한 부정맥 분류 시스템의 설계)

  • Kim, Seong-Woo;Kim, In-Ju;Shin, Seung-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-43
    • /
    • 2020
  • Recently, many researches have been actively to diagnose symptoms of heart disease using ECG signal, which is an electrical signal measuring heart status. In particular, the electrocardiogram signal can be used to monitor and diagnose arrhythmias that indicates an abnormal heart status. In this paper, we proposed 1-D convolutional neural network for arrhythmias classification systems. The proposed model consists of deep 11 layers which can learn to extract features and classify 5 types of arrhythmias. The simulation results over MIT-BIH arrhythmia database show that the learned neural network has more than 99% classification accuracy. It is analyzed that the more the number of convolutional kernels the network has, the more detailed characteristics of ECG signal resulted in better performance. Moreover, we implemented a practical application based on the proposed one to classify arrythmias in real-time.

Design of Two Stage Amative Filters for Real time QRS Detection (실시간 ECG 분석을 위한 QRS 검출에 관한 연구 -2단 적응필터을 이용한-)

  • 이순혁;윤형로
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.49-56
    • /
    • 1995
  • This paper is a study on the design of adptive filter for QRS complex detection. We propose a simple adaptive algorithm to increase capability of noise cancelation in QRS complex detection with two stage adaptive filter. At the first stage, background noise is removed and at the next stage, only spectrum of QRS complex components is passed. Two adaptive filters can afford to keep track of the changes of both noise and QRS complex. Each adaptive filter consists of prediction error filter and FIR filter. The impulse response of FIR filter uses coefficients of prediction error filter. The detection rates for 105 and 108 of MIT/BIH data base were 99.3% and 97.4% respectively.

  • PDF

Encryptions of ECG Signals by Using Fiducial Features (심전도 신호의 특징 값을 이용한 암호화)

  • Kim, Jeong-Hwan;Kim, Kyeong-Seop;Shin, Seung-Won;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2380-2385
    • /
    • 2011
  • With the advent of ubiquitous healthcare technology to provide a patient with the necessary medical services in anywhere and anytime scheme, the importance of securing safe communication without tampering the medical data by the unauthorized users is getting more emphasized. With this aim, a novel method for constructing encryption keys on the basis of biometrical measurement of electrocardiogram (ECG) is suggested in this study. The experiments on MIT/BIH database show that our proposed method can achieve safe communication by successfully ciphering and deciphering ECG data including premature ventricular contraction arrhythmia signal with compromising its fiducial features as biometric key to transmit the data via the internet network.

Detection of ECG Signal Waveform for Arrhythmia Classification (부정맥 분류를 위한 ECG 신호의 파형검출 알고리즘)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.453-456
    • /
    • 2005
  • 일반적으로 심전도는 심장계통의 질환을 판단할 때 사용된다. 이러한 심장질환의 이상 유무를 자동으로 진단하기 위해서는 QRS파형 검출을 필요로 하며, 이를 위하여 웨이블렛변환 방법이나 템플릿매칭, 룰 베이스 방법 등 여러 가지 방법들이 쓰이고 있으나, 심전도 신호가 표준화된 형태를 갖지 않는 경우는 검출 능력에 많은 한계를 갖고 있다. 본 논문은 파형의 베이스라인(baseline)을 기준으로 진폭 값에 절대치을 취하는 방법으로 파형의 R피크값을 검출하는 알고리즘을 제안한다. 결과를 검증하기 위해 MIT-BIH 데이타베이스에서 제공하는 데이터와 R피크값을 본 논문의 알고리즘으로 추출된 R피크값과 비교한 결과 96.7%의 검출률을 보였다.

  • PDF

A Study of ECG Based Cardiac Diseases Diagnoses (심전도 신호를 이용한 심장 질환 진단에 관한 연구)

  • Kim, Hyun-Dong;Yoon, Jae-Bok;Kim, Hyun-Dong;Kim, Tae-Seon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.328-330
    • /
    • 2004
  • In this paper, ECG based cardiac disease diagnosis models are developed. Conventionally, ECG monitoring equipments can only measure and store ECG signals and they always require medical doctor's diagnosis actions which are not desirable for continuous ambulatory monitoring and diagnosis healthcare systems. In this paper, two kinds of neural based self cardiac disease diagnosis engines are developed and tested for four kinds of diseases, sinus bradycardia, sinus tachycardia, left bundle branch block and right bundle branch block. For diagnosis engines, error backpropagation neural network (BP) and probabilistic neural network (PNN) were applied. Five signal features including heart rate, QRS interval, PR interval, QT interval, and T wave types were selected for diagnosis characteristics. To show the validity of proposed diagnosis engine, MIT-BIH database were used to test. Test results showed that BP based diagnosis engine has 71% of diagnosis accuracy which is superior to accuracy of PNN based diagnosis engine. However, PNN based diagnosis engine showed superior diagnosis accuracy for complex-disease diagnoses than BP based diagnosis engine.

  • PDF