• Title/Summary/Keyword: MIMO transmission

Search Result 357, Processing Time 0.025 seconds

Efficient Transmission Mode Selection Scheme for MIMO-based WLANs

  • Thapa, Anup;Kwak, Kyung Sup;Shin, Seokjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2365-2382
    • /
    • 2014
  • While single-user spatial multiplexing multiple-input multiple-output (SU-MIMO) allows spatially multiplexed data streams to be transmitted to one node at a time, multi-user spatial multiplexing MIMO (MU-MIMO) enables the simultaneous transmission to multiple nodes. However, if the transmission time required to send packets to each node varies considerably, MU-MIMO may fail to utilize the available MIMO capacity to its full potential. The transmission time typically depends upon two factors: the link quality of the selected channel and the data length (packet size). To utilize the cumulative capacity of multiple channels in MIMO applications, the assignment of channels to each node should be controlled according to the measured channel quality or the transmission queue status of the node.A MAC protocol design that can switch between MU-MIMO and multiple SU-MIMO transmissions by considering the channel quality and queue status information prior to the actual data transmission (i.e., by exchanging control packets between transmitter and receiver pairs) could address such issues in a simple but in attractive way. In this study, we propose a new MAC protocol that is capable of performing such switching and thereby improve the system performance of very high throughput WLANs. The detailed performance analysis demonstrates that greater benefits can be obtained using the proposed scheme, as compared to conventional MU-MIMO transmission schemes.

Outage Performance Study of Selective MIMO Transmission in Wireless Relaying Systems (무선 중계 시스템에서 선택적 MIMO 전송에 대한 아웃티지 성능 연구)

  • Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2259-2264
    • /
    • 2013
  • In this paper, a selective multiple-input multiple-output(MIMO) transmission scheme is proposed in dual-hop MIMO relaying systems, in which orthogonal space-time block code(OSTBC) transmission and transmit antenna selection(TxAS) transmission are selectively used. Assuming independent Rayleigh fading channels, the outage probability is analyzed for a decode-and-forward(DF) relaying system using the selective MIMO transmission scheme. Also, through numerical investigation, the outage performance for the DF relaying system using the selective MIMO transmission scheme is compared with that for the conventional DF relaying system using OSTBC or TxAS. Moreover, from the performance comparison, it is shown that the proposed scheme can reduce the system overhead without outage performance degradation.

Performance Analysis and Design of MIMO Systems for Terrestrial Transmission of UHDTV (UHDTV를 위한 MIMO 전송 시스템 성능 분석 및 설계)

  • Jo, Bong-Gyun;Han, Dong-Seog
    • Journal of Broadcast Engineering
    • /
    • v.15 no.4
    • /
    • pp.547-554
    • /
    • 2010
  • In this paper, we propose transmission systems for ultra high definition television (UHDTV) through terrestrial transmission by applying the multi-input multi-output (MIMO) technology. The space time block code, hybrid STBC, V-BLAST and linear dis- persion code are considered to support a high data rate of the UHDTV system. The performance of proposed MIMO systems are evaluated through computer simulations. Then we suggest MIMO parameters, number of antennas and optimal transmission scheme to achieve the transmission rate of the UHDTV system.

Adaptive MIMO Transmission Method based on the Optimal Combination of Antenna Diversity with Spatial Multiplexing (안테나 다이버시티와 공간 다중화의 조합에 기초한 적응적 MIMO 전송 기법)

  • Kim, Dae-Hyun;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.394-401
    • /
    • 2007
  • MIMO transmission systems can have various transmission modes, which result from the various combinations of the antenna diversity with spatial multiplexing. In this paper, we find the optimal mode to maximize the capacity with the BER constraint and the optimal selection (diversity transmission or spatial multiplexing transmission) for transmission of each transmission antenna, if necessary. The computer simulation results show that the proposed scheme has more capacity than the conventional scheme.

Sum-Rate Improvement Method Using Quasi-Orthogonal Beam Pairs for UCA MIMO Transmission (UCA MIMO 전송 시 준직교적 빔 쌍을 활용한 합 전송률 향상 방안)

  • Yang, Jiyeong;Kim, Huiwon;Sung, Wonjin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.1
    • /
    • pp.32-35
    • /
    • 2018
  • Massive multiple-input multiple-output (MIMO) transmission is an essential technique for achieving the high bandwidth efficiency required in 5G mobile communication systems. Various forms of arrays can be used as the number of antenna elements increases for massive MIMO transmission. In this letter, we propose a beamforming algorithm applicable to multiuser MIMO transmission using uniform circular arrays. By employing quasi-orthogonal beam pairs obtained from the inter-beam correlation information, we minimize inter-user interference and evaluate the resulting performance gain.

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Implementation of Software Platform for STTC-OFDM based WiBro Systems (STTC-OFDM 기반의 WiBro 시스템 소프트웨어 플랫폼 구현)

  • Lee, Dong-Gi;Lee, Jong-Sik;Jun, Hwang-In;Lee, Seung-Hyun;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.535-539
    • /
    • 2008
  • Recently mobile devices can transmit mass data contained multi-media contents. According these flow, a demand for fast data transmission is being risen, so we acutely require remarkable technology that overcome mobile communication's poor environment and rise data transmission volume. Because it can be satisfied these needs, the OFDM(Orthogonal Frequency Division Multiplexing) that rise data transmission volume using efficient frequency, and MIMO(Multiple Input Multiple Output) that rise transmission confidence and data transmission volume using numbers of antenna is attended. Before design of MIMO-OFDM System we want to make an analysis for theory of its systems, and we want to design MIMO-OFDM simulator for verify an ability of modulation, data volume and numbers of antenna.

  • PDF

A Channel State Information Feedback Method for Massive MIMO-OFDM

  • Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.352-361
    • /
    • 2013
  • Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.

Maximum Ratio Transmission for Space-Polarization Division Multiple Access in Dual-Polarized MIMO System

  • Hong, Jun-Ki;Jo, Han-Shin;Mun, Cheol;Yook, Jong-Gwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3054-3067
    • /
    • 2015
  • The phenomena of higher channel cross polarization discrimination (XPD) is mainly observed for future wireless technologies such as small cell network and massive multiple-input multiple-output (MIMO) system. Therefore, utilization of high XPD is very important and space-polarization division multiple access (SPDMA) with dual-polarized MIMO system could be a suitable solution to high-speed transmission in high XPD environment as well as reduction of array size at base station (BS). By SPDMA with dual-polarized MIMO system, two parallel data signals can be transmitted by both vertically and horizontally polarized antennas to serve different mobile stations (MSs) simultaneously compare to conventional space division multiple access (SDMA) with single-polarized MIMO system. This paper analyzes the performance of SPDMA for maximum ratio transmission (MRT) in time division duplexing (TDD) system by proposed dual-polarized MIMO spatial channel model (SCM) compare to conventional SDMA. Simulation results indicate that how SPDMA utilizes the high XPD as the number of MS increases and SPDMA performs very close to conventional SDMA for same number of antenna elements but half size of the array at BS.