• Title/Summary/Keyword: MIMO relay systems

Search Result 45, Processing Time 0.023 seconds

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Performance of MIMO-OFDM Systems using The Relay With Multi-Antennas for Cooperative Diversity (Put English Title Here) (다중 안테나의 relay를 가진 MIMO-OFDM시스템의 Cooperative diversity에 따른 성능)

  • Kim, Chan-Kyu;Kim, Young-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • In this paper, the new cooperative communication techniques is proposed for multi-input multi-output(MIMO)-orthogonal frequency division multiplexing (OFDM) system using the relay with multiple antenna. As the MIMO channel is formed by space time coding at the MS(mobile station)-RS(relay station) and RS-BS(base station), we can get the cooperative diversity and MIMO diversity gain simultaneously. Therefore, the performance of MIMO-OFDM system using the relay with multiple-antennas is very improved. And the simple power allocation technique is Proposed for the transmitting power of the mobile station and the relay.

Massive MIMO TWO-Hop Relay Systems Over Rician Fading Channels

  • Cao, Jian;Yu, Shujuan;Yang, Jie;Zhang, Yun;Zhao, Shengmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5410-5426
    • /
    • 2019
  • With the advent of the fifth-generation (5G) era, Massive multiple-input multiple-output (MIMO) relay systems have experienced the rapid development. Recently, the performance analysis models of Massive MIMO relay systems have been proposed, which are mostly based on Rayleigh fading channels. In order to create a more suitable model for 5G Internet of Things scenarios, our study is based on the Rician fading channels, where line-of-sight (LOS) path exists in the channels. In this paper, we assume the channel state information (CSI) is perfect. In this case, we use statistical information to derive the analytical exact closed-form expression for the achievable sum rate of the uplink for the Massive MIMO two-hop relay system over Rician fading channels. Moreover, considering the different communication scenarios, we derive the analytical exact closed-form expression for the achievable sum rates of the uplink for other three scenarios. Finally, based on these expressions, we make simulations and analyze the performance under different transmit powers and Rician-factors, which provides a theoretical basis and reference for further research.

Channel Selective Relay-based Transmission System for Broadband Wireless Communications (광대역 무선 이동 통신을 위한 채널 선택적 릴레이 기반 전송 시스템)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.8-15
    • /
    • 2009
  • Relay-assisted multi-input multi-output (MIMO) technique has become a promising candidate for next generation broadband wireless communications for high speed access. In this paper, we propose channel selective relay-based MIMO transmission system. The performance of relay-based system can be improved by using the subcarriers selectively based on the channel condition between relay and mobile station. Simulation results show that the proposed relay-based system considerably outperforms the conventional relay-based system.

Least Square Channel Estimation for Two-Way Relay MIMO OFDM Systems

  • Fang, Zhaoxi;Shi, Jiong
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.806-809
    • /
    • 2011
  • This letter considers the channel estimation for two-way relay MIMO OFDM systems. A least square (LS) channel estimation algorithm under block-based training is proposed. The mean square error (MSE) of the LS channel estimate is computed, and the optimal training sequences with respect to this MSE are derived. Some numerical examples are presented to evaluate the performance of the proposed channel estimation method.

Rate Bounds for MIMO Relay Channels

  • Lo, Caleb K.;Vishwanath, Sriram;Heath, Jr., Robert W.
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • This paper considers the multi-input multi-output (MIMO) relay channel where multiple antennas are employed by each terminal. Compared to single-input single-output (SISO) relay channels, MIMO relay channels introduce additional degrees of freedom, making the design and analysis of optimal cooperative strategies more complex. In this paper, a partial cooperation strategy that combines transmit-side message splitting and block-Markov encoding is presented. Lower bounds on capacity that improve on a previously proposed non-cooperative lower bound are derived for Gaussian MIMO relay channels.

Joint Lattice-Reduction-Aided Precoder Design for Multiuser MIMO Relay System

  • Jiang, Hua;Cheng, Hao;Shen, Lizhen;Liu, Guoqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3010-3025
    • /
    • 2016
  • Lattice reduction (LR) has been used widely in conventional multiple-input multiple-output (MIMO) systems to enhance the performance. However, LR is hard to be applied to the relay systems which are important but more complicated in the wireless communication theory. This paper introduces a new viewpoint for utilizing LR in multiuser MIMO relay systems. The vector precoding (VP) is designed along with zero force (ZF) criterion and minimum mean square error (MMSE) criterion and enhanced by LR algorithm. This implementable precoder design combines nonlinear processing at the base station (BS) and linear processing at the relay. This precoder is capable of avoiding multiuser interference (MUI) at the mobile stations (MSs) and achieving excellent performance. Moreover, it is shown that the amount of feedback information is much less than that of the singular value decomposition (SVD) design. Simulation results show that the proposed scheme using the complex version of the Lenstra--Lenstra--Lovász (LLL) algorithm significantly improves system performance.

Multiuser Precoding and Power Allocation with Sum Rate Matching for Full-duplex MIMO Relay (전이중 MIMO 릴레이를 위한 다중 사용자 Precoding 및 Sum Rate 정합 기반 전력 할당 기법)

  • Lee, Jong-Ho;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1020-1028
    • /
    • 2010
  • Relay has attracted great attention due to its inherent capability to extend the service coverage and combat shadowing in next generation mobile communication systems. So far, most relay technologies have been developed under the half-duplex (HD) constraint that prevents relays from transmitting and receiving at the same time. Although half-duplex relay (HDR) is easy to implement, it requires partitioning of resource for transmission and reception, reducing the whole system capacity. In this paper, we propose a multinser precoding and power control scheme with sum rate matching for a full-duplex (FD) multiple-input multiple-output (MIMO) relay. Full-duplex relay (FDR) can overcome the drawback of HDR by transmitting and receiving on the same frequency at the same time, while it is crucial to reduce the effect of self-interference that is caused by its own transmitter to its own receiver. The proposed precoding scheme cancels the self-interference of the FDR as well as to support multiuser MIMO. Moreover, we suggest a power allocation scheme for FD MIMO relay with the constraint that the sum rate of the relay's received data streams is equal to that of the relay's transmit data streams.

Linear Precoding Technique for AF MIMO Relay Systems (증폭 후 재전송 MIMO 중계 시스템을 위한 선형 전처리 기법)

  • Yoo, Byung-Wook;Lee, Kyu-Ha;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.3
    • /
    • pp.16-21
    • /
    • 2010
  • In this paper, the linear source and relay precoders are designed for AF MIMO relay systems. In order to minimize mean squared error (MSE) of received symbol vector, the source and relay precoders are proposed, and MMSE receiver which is suitable to those precoders is utilized at the destination node. As the optimal precoders for source and relay nodes are not represented in closed form and induced by iterative method, we suggest a simple precoder design scheme. Simulation results show that the performance of the proposed precoding scheme is comparable with that of optimal scheme and outperforms other relay precoding schemes. Moreover, in high SNR region, it is revealed that SNR between source and relay node is more influential than SNR between relay and destination node in terms of bit error rate.

Energy-Efficient Antenna Selection in Green MIMO Relaying Communication Systems

  • Qian, Kun;Wang, Wen-Qin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2016
  • In existing literature on multiple-input multiple-output (MIMO) relaying communication systems, antenna selection is often implemented by maximizing the channel capacity or the output single-to-noise ratio (SNR). In this paper, we propose an energy-efficient low-complexity antenna selection scheme for MIMO relaying communication systems. The proposed algorithm is based on beamforming and maximizing the Frobenius norm to jointly optimize the transmit power, number of active antennas, and antenna subsets at the source, relaying and destination. We maximize the energy efficiency between the link of source to relay and the link of relay to destination to obtain the maximum energy efficiency of the system, subject to the SNR constraint. Compared to existing antenna selection methods forMIMO relaying communication systems, simulation results demonstrate that the proposed method can save more power in term of energy efficiency, while having lower computational complexity.