• Title/Summary/Keyword: MIMO multiplexing

Search Result 248, Processing Time 0.032 seconds

Spatial Multiplexing Receivers in UWB MIMO Systems based on Prerake Combining

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.385-390
    • /
    • 2011
  • In this paper, various ultra-wideband (UWB) spatial multiplxing (SM) multiple input multiple output (MIMO) receivers based on a prerake diversity combining scheme are discussed and their performance is analyzed. Several UWB MIMO detection approaches such as zero forcing (ZF), minimum mean square error (MMSE), ordered successive interference cancellation (OSIC), sorted QR decomposition (SQRD), and maximum likelihood (ML) are considered in order to cope with inter-channel interference. The UWB SM systems based on transmitter-side multipath preprocessing and receiver-side MIMO detection can either boost the transmission data rate or offer significant diversity gain and improved BER performance. The error performance and complexity of linear and nonlinear detection algorithms are comparatively studied on a lognormal multipath fading channel.

Subspace Method Based Precoding for MIMO Spatial Multiplexing (공간 다중화를 위한 부 공간 방식 Precoding 기법)

  • Mun Cheol;Jung Chang-Kyoo;Park DongHee;Kwak Yoonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1161-1166
    • /
    • 2005
  • In this paper, for spatial multiplexing with limited feedback, we propose subspace based precoding in which the active bases are selected at the receiver from a finite number of basis sets known at both receiving and transmitting ends, conveyed to the transmitter using limited feedback, and assembled into a preceding matrix at the transmitter. The selected bases are conveyed to the transmitter using feedback information on both the index of a basis set, which indicates the most appropriate set of coordinates for describing a MIMO channel, and the active bases having the significant amounts of energy in the selected basis set. We show that the proposed subspace based precoding provides capacity similar to that of the closed-loop MIMO even with limited feedback.

Hybrid Detection Algorithm for Spatial Multiplexing MIMO-OFDM System (공간 다중화 MIMO-OFDM 시스템을 위한 Hybrid 검출 기법)

  • Won, Tae-Yoon;Kim, Seung-Hwan;Lee, Jin-Yong;Kim, Young-Lok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.6C
    • /
    • pp.539-546
    • /
    • 2010
  • In next generation wireless communication systems based on OFDM, multiple-input multiple-output (MIMO) technique is adopted in order to achieve high data throughput with limited bandwidth. As one of MIMO techniques, spatial multiplexing scheme needs high performance data detection algorithm that can be performed with low computational complexity. In this paper, we propose an algorithm that can compute QRM-MLD with reduced complexity. Also, hybrid detection technique is proposed, which can reduce the complexity by selecting between MMSE and QRM-MLD according to the channel condition. The proposed algorithm provides the trade-off between performance and complexity. The computer simulations for downlink transmission in 3GPP LTE system show that less than 0.1dB performance degradation can be achieved at 0.1% BER with 59% reduction on computational complexity compared with the conventional QRM-MLD algorithm.

Performance of MIMO-OFDM systems combing Pre-FFT beamformer with power control algorithm (전력제어 기법과 결합된 Pre-FFT 빔형성기를 가진 MIMO-OFDM 시스템의 성능)

  • Kim, Chan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.24-31
    • /
    • 2009
  • In this paper, the new technique combing power control with Pre-FFT beamforming is proposed for MIMO(multi-input multi-output)-OFDM(orthogonal frequency division multiplexing) system. As combining the proposed power control with beamforming, we can iteratively control the transmittingpower and update the weight of beamformer together. And then, the beam is formed toward the desired direction and SNIR of each subcarrier is converged to target SNIR. Therefore, the performance of MIMO-OFDM system is very improved. BER performance improvement of the proposed approach is investigated through computer simulation by combining power allocation algorithm with MIMO-OFDM system using Pre-FFT beamformer

A Channel State Information Feedback Method for Massive MIMO-OFDM

  • Kudo, Riichi;Armour, Simon M.D.;McGeehan, Joe P.;Mizoguchi, Masato
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.352-361
    • /
    • 2013
  • Combining multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) with a massive number of transmit antennas (massive MIMO-OFDM) is an attractive way of increasing the spectrum efficiency or reducing the transmission energy per bit. The effectiveness of Massive MIMO-OFDM is strongly affected by the channel state information (CSI) estimation method used. The overheads of training frame transmission and CSI feedback decrease multiple access channel (MAC) efficiency and increase the CSI estimation cost at a user station (STA). This paper proposes a CSI estimation scheme that reduces the training frame length by using a novel pilot design and a novel unitary matrix feedback method. The proposed pilot design and unitary matrix feedback enable the access point (AP) to estimate the CSI of the signal space of all transmit antennas using a small number of training frames. Simulations in an IEEE 802.11n channel verify the attractive transmission performance of the proposed methods.

Power based scheduling for Collaborative MIMO system (Collaborative MIMO 시스템을 위한 전력기반 스케줄링 방식)

  • Kim, Young-Joon;Lee, Jung-Seung;Baik, Doo-Kwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1209-1216
    • /
    • 2008
  • In order to maximize spectrum efficiency and data rate MIMO(Multiple Input Multiple Output) is adopted to wireless system. OFDM-based WiMAX and LTE accommodate MIMO as mandatory technology. STC(Space Time Coding) and SM(Spatial Multiplexing) are used in downlink while in uplink C-MIMO(Collaborative MIMO) is used to improve data throughput. In this paper conventional pairing schemes, RPS(Random Pairing Scheduling) and DPS(Determinant Pairing Scheduling) are analyzed. From the analysis the performance of DPS algorithm is better than that of RPS because DPS measures orthogonal factor between paired users. However, there are potential problems such as hardware complexity and performance. To overcome the issues Power-Based Scheduling(PBS) algorithm is proposed for C-MIMO. PBS can provide higher performance compared to RPS and dramatically reduce hardware complexity compared to DPS

OFDM Transmission Method Based on the Beam-Space MIMO System (빔공간 MIMO 시스템에 기반한 OFDM 전송방법)

  • Choi, Jinkyu;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.425-431
    • /
    • 2015
  • Beamspace Multiple-Input Multiple Output(MIMO) system can transmit multiple data by using Electronically Steerable Parasitic Array Radiator(ESPAR) antenna which has single Radio Frequency(RF)-chain. Beamspace MIMO system can reduce complexity of the system and size of antenna in comparison with the conventional MIMO system because of characteristic of ESPAR antenna using the single antenna and the RF-chain. Heretofore, only the research of transmitting single-carrier has been conducted by the use of beamspace MIMO system. Therefore, in this paper, we propose beamspace MIMO system based on Orthogonal Frequency Division Multiplexing(OFDM) for transmitting the multi-carrier and analysis the performance of this system. We find a proper reactance value which has good performance because proposed system changes the performance by the reactance values of parasitic elements. and we confirm that performance of the proposed system is similar to conventional MIMO system based on OFDM.

The Determination of Multiplexing-Diversity Transition Mode in the Visual-MIMO System (Visual-MIMO 시스템에서의 다중화-다이버시티 모드 전환 결정)

  • Kim, Ji-won;Kim, Ki-doo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • Recently, researches about the communication between LED array and the camera (alias 'Visual-MIMO'), have been actively conducted, and the application to the vehicle and a smart phone is expected to be maximized. Since the bit error may occur if the ISI is severe in a LED array, it is necessary to switch from the multiplexing to the diversity mode. In this paper, according to the use or not of a reference array pattern, a method for determining the transition time to the diversity mode is suggested and verified. When using the reference pattern, it determines the transition time to the diversity mode from the multiplexing using the brightness information of the received image. If the reference array pattern is not used, the size of LED array compared to the entire image according to the distance is used and the size of the LED array at the distance of a severe ISI may be used for the determination of transition time to the diversity. Finally, the proposed method is verified through the simulation and hardware experiments as well as by analyzing the performance in accordance with the ISI level and the distance.

A Study on the OFDM System Using Multi-Block SDM (Multi-Block SDM을 이용한 OFDM 시스템에 관한 연구)

  • Lee, Kyu-Jin;Kim, Ji-Sung;Kim, Nam-Il;Lee, Kye-San
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.122-130
    • /
    • 2008
  • Improving the transmission rates of multi-media delivery, such as moving pictures and internet services, has become increasingly important in modern society. To satisfy such high data rate requirements, the MIMO technique, which has the capacity to transmit large amounts of data using limited frequency resources, was developed. The Space Division Multiplexing (SDM) system is one of the MIMO techniques to be able to improve the transmission capacity. However, it is unable to achieve diversity gain because of interference due to the use of multiple antennas. In this paper, an SDM system that utilizes a Multi-Block method as an advanced transmission technique in a wireless communication system to obtain diversity gain is proposed and discussed fur the performance of the proposed system.

  • PDF

Performance Evaluation for Linear Space-time Coded MIMO-OFDM System considering Diversity-Spatial Multiplexing (다이버시티와 공간 다중화를 고려하여 선형 STBC를 사용한 OFDM 시스템 성능 분석)

  • 이해정;양청해;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.240-247
    • /
    • 2004
  • In order to transmit data at high speed in the wireless environment, OFDM is selected as the transmission method of various high-speed wireless communication system since it has the advantage to deal easily the serious selective frequency fading channel by the multiple path. We evaluate STBC-OFDM and linear STBC-OFDM combining with a class of recently proposed linear scalable space-time block codes and OFDM in MIMO channel environments, and demonstrate the performance for spatial multiplexing and diversity gain. The codes are able to use jointly transmit diversity in combination with spatial multiplexing, and achieve spatial and temporal diversity. Frequency diversity of frequency selective channels can be utilized by combining the linear STBC and OFDM. Simulation results are shown to demonstrate the better performance of proposed approach in comparison with STBC-OFDM.