• Title/Summary/Keyword: MIMO interference channel

Search Result 181, Processing Time 0.02 seconds

The Solution for Cooperative Beamforming Design in MIMO Multi-way Relay Networks

  • Wang, Yong;Wu, Hao;Tang, Liyang;Li, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.956-970
    • /
    • 2015
  • In this paper, we study the design of network coding for the generalized transmit scheme in multiple input multiple output Y channel, where K users wish to exchange specified and shared information with each other within two slots. Signal space alignment at each user and the relay is carefully constructed to ensure that the signals from the same user pair are grouped together. The cross-pair interference can be canceled during both multiple accessing channel phase and broadcasting channel phase. The proposed signal processing scheme achieves the degrees of freedom of ${\eta}(K)=K^2$ with fewer user antennas.

Performance Evaluation of Interference Alignment Technique in Wireless LAN Environment (무선랜 환경에서 간섭정렬 기술의 성능 평가)

  • Yoon, Seokhyun;Shin, Won-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1639-1644
    • /
    • 2016
  • In this paper, we consider the performance improvement that can be obtained with interference alignment (IA) technique applied to 802.11ac based multi-BSS WiFi service. To this end, we developed a system simulator consisting of a link-level PHY simulator, based on 802.11ac specification, and multi-BSS proportional-fair scheduler. Specifically, assuming perfect channel side information and synchronization of signals from multiple APs, we used a SLNR based interference alignment algorithm proposed in [13] and compared its performance with that of multiuser beamforming based time-sharing system. The performance was evaluated in terms of average throughput per BSS and 5% worst user throughput. The results show that 70 to 100% throughput gain can be obtained in this ideal scenario.

A Golden Coded-Spatial Modulation MIMO System (골든 부호 기반의 공간 변조 다중 안테나 시스템)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, the spatial modulation (SM) multi-input multi-output (MIMO) system is proposed for indoor wireless local area networks (WLANs) with improved spectral efficiency. SM is suitable for high speed WLANs with avoiding the inter channel interference (ICI). Only one transmit antenna is activated in SM at each symbol interval. Therefore, it fails to attain the maximum coding gain of MIMO. The space time block code (STBC)-SM MIMO system can attain the maximum diversity gain at the expense of spectral efficiency. The proposed Golden-SM MIMO system uses the Golden code to improve the coding gain and spectral efficiency at the same time. The Golden code is adapted for STBC-SM and it makes the new code book for transmission symbols. The performance of the proposed system is compared with the conventional systems with computer simulations.

Turbo Perallel Space-Time Processing System with LDPC Code in MIMO Channel for High-Speed Wireless Communications (MIMO 채널에서 고속 무선 통신을 위한 LDPC 부호를 갖는 터보 병렬 시공간 처리 시스템)

  • 조동균;박주남;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.10C
    • /
    • pp.923-929
    • /
    • 2003
  • Turbo processing have been known as methods close to Shannon limit in the aspect of wireless multi-input multi-output (MIMO) communications similarly to wireless single antenna communication. The iterative processing can maximize the mutual effect of coding and interference cancellation, but LDPC coding has not been used for turbo processing because of the inherent decoding process delay. This paper suggests a LDPC coded MIMO system with turbo parallel space-time (Turbo-PAST) processing for high-speed wireless communications and proposes a average soft-output syndrome (ASS) check scheme at low signal to noise ratio (SNR) for the Turbo-PAST system to decide the reliability of decoded frame. Simulation results show that the suggested system outperforms conventional system and the proposed ASS scheme effectively reduces the amount of turbo processing iterations without performance degradation from the point of average number of iterations.

Novel SINR-Based User Selection for an MU-MIMO System with Limited Feedback

  • Kum, Donghyun;Kang, Daegeun;Choi, Seungwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • This paper presents a novel user selection method based on the signal-to-interference-plus-noise ratio (SINR), which is approximated using limited feedback data at the base stations (BSs) of multiple user multiple-input multiple-output (MU-MIMO) systems. In the proposed system, the codebook vector index, the quantization error obtained from the correlation between the measured channel and the codebook vector, and the measured value of the largest singular value are fed back from each user to the BS. The proposed method not only generates precoding vectors that are orthogonal to the precoding vectors of the previously selected users and are highly correlated with the codebook vector of each user but also adopts the quantization error in approximating the SINR, which eventually provides a significantly more accurate SINR than the conventional SINR-based user selection techniques. Computer simulations show that the proposed method enhances the sum rate of the conventional SINR-based methods by at least 2.4 (2.62) bps/Hz when the number of transmit antennas and number of receive antennas per user terminal is 4 and 1(2), respectively, with 100 candidate users and an SNR of 30 dB.

A Study of Connectivity in MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, H.;Jafarkhani, H.;Kazemitabar, J.
    • Journal of Communications and Networks
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • We investigate the connectivity of fading wireless ad-hoc networks with a pair of novel connectivity metrics. Our first metric looks at the problem of connectivity relying on the outage capacity of MIMO channels. Our second metric relies on a probabilistic treatment of the symbol error rates for such channels. We relate both capacity and symbol error rates to the characteristics of the underlying communication system such as antenna configuration, modulation, coding, and signal strength measured in terms of signal-to-interference-noise-ratio. For each metric of connectivity, we also provide a simplified treatment in the case of ergodic fading channels. In each case, we assume a pair of nodes are connected if their bi-directional measure of connectivity is better than a given threshold. Our analysis relies on the central limit theorem to approximate the distribution of the combined undesired signal affecting each link of an ad-hoc network as Gaussian. Supported by our simulation results, our analysis shows that (1) a measure of connectivity purely based on signal strength is not capable of accurately capturing the connectivity phenomenon, and (2) employing multiple antenna mobile nodes improves the connectivity of fading ad-hoc networks.

Low Complexity Zero-Forcing Beamforming for Distributed Massive MIMO Systems in Large Public Venues

  • Li, Haoming;Leung, Victor C.M.
    • Journal of Communications and Networks
    • /
    • v.15 no.4
    • /
    • pp.370-382
    • /
    • 2013
  • Distributed massive MIMO systems, which have high bandwidth efficiency and can accommodate a tremendous amount of traffic using algorithms such as zero-forcing beam forming (ZFBF), may be deployed in large public venues with the antennas mounted under-floor. In this case the channel gain matrix H can be modeled as a multi-banded matrix, in which off-diagonal entries decay both exponentially due to heavy human penetration loss and polynomially due to free space propagation loss. To enable practical implementation of such systems, we present a multi-banded matrix inversion algorithm that substantially reduces the complexity of ZFBF by keeping the most significant entries in H and the precoding matrix W. We introduce a parameter p to control the sparsity of H and W and thus achieve the tradeoff between the computational complexity and the system throughput. The proposed algorithm includes dense and sparse precoding versions, providing quadratic and linear complexity, respectively, relative to the number of antennas. We present analysis and numerical evaluations to show that the signal-to-interference ratio (SIR) increases linearly with p in dense precoding. In sparse precoding, we demonstrate the necessity of using directional antennas by both analysis and simulations. When the directional antenna gain increases, the resulting SIR increment in sparse precoding increases linearly with p, while the SIR of dense precoding is much less sensitive to changes in p.

Optimized BD-ZF Precoder for Multiuser MIMO-VFDM Cognitive Transmission

  • Yao, Rugui;Xu, Juan;Li, Geng;Wang, Ling
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.291-301
    • /
    • 2016
  • In this paper, we study an optimized block-diagonal zero-forcing (BD-ZF) precoder in a two-tiered cognitive network consisting of a macro cell (MC) and a small cell (SC). By exploiting multiuser multiple-input and multiple-output Vandermonde-subspace frequency-division multiplexing (VFDM) transmission, a cognitive SC can coexist with an MC. We first devise a cross-tier precoder based on the idea of VFDM to cancel the interference from the SC to the MC. Then, we propose an optimized BD-ZF intra-tier precoder (ITP) to suppress multiuser interference and maximize the throughput in the SC. In the case where the dimension of a provided null space is larger than that required by the BD-ZF ITP, the optimized BD-ZF ITP can collect all limited channel gain by optimizing rotating and selecting matrices. Otherwise, the optimized BD-ZF ITP is validated to be equivalent to the conventional BD-ZF ITP in terms of throughput. Numerical results are presented to demonstrate the throughput improvement of the proposed optimized BD-ZF ITP and to discover the impact of imperfect channel state information.

Radio Resource Management Algorithm for Uplink Coordinated Cooperative Spatial Multiplexing (셀 간 협동 CSM에서 상향 링크 용량 개선을 위한 자원 할당 알고리즘)

  • Mun, Cheol;Jo, Han-Shin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1311-1317
    • /
    • 2010
  • In this paper, for a uplink space division multiple access system named cooperative spatial multiplexing(CSM), radio resource management(RRM) algorithms are proposed based on sharing uplink channel information among a serving base station(BS) and interfering BSs in a uplink coordinated wireless communication system. A constrained maximum transmit power algorithm is proposed for mobile station(MS) to limit uplink inter-cell interference(ICI). And joint scheduling algorithm among coordinated BSs is proposed to enhance uplink capacity through ICI mitigation by using channel information from interfering BSs. It is shown that the proposed RRM algorithm provides a considerable uplink capacity enhancement by effective ICI mitigation only with moderate complexity.

Selective Decoding Schemes and Wireless MAC Operating in MIMO Ad Hoc Networks

  • Suleesathira, Raungrong;Aksiripipatkul, Jansilp
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.421-427
    • /
    • 2011
  • Problems encountered in IEEE 802.11 medium access control (MAC) design are interferences from neighboring or hidden nodes and collision from simultaneous transmissions within the same contention floors. This paper presents the selective decoding schemes in MAC protocol for multiple input multiple output ad-hoc networks. It is able to mitigate interferences by using a developed minimum mean-squared error technique. This interference mitigation combined with the maximum likelihood decoding schemes for the Alamouti coding enables the receiver to decode and differentiate the desired data streams from co-channel data streams. As a result, it allows a pair of simultaneous transmissions to the same or different nodes which yields the network utilization increase. Moreover, the presented three decoding schemes and time line operations are optimally selected corresponding to the transmission demand of neighboring nodes to avoid collision. The selection is determined by the number of request to send (RTS) packets and the type of clear to send packets. Both theoretical channel capacity and simulation results show that the proposed selective decoding scheme MAC protocol outperforms the mitigation interference using multiple antennas and the parallel RTS processing protocols for the cases of (1) single data stream and (2) two independent data streams which are simultaneously transmitted by two independent transmitters.