• Title/Summary/Keyword: MIMO Detection

Search Result 202, Processing Time 0.027 seconds

Implementation of $2{\times}2$ MIMO LTE Base Station using GPU for SDR System (GPU를 이용한 SDR 시스템 용 LTE MIMO 기지국 기능 구현)

  • Lee, Seung Hak;Kim, Kyung Hoon;Ahn, Chi Young;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.91-98
    • /
    • 2012
  • This paper implements 2X2 MIMO Long Term Evolution (LTE) base station using Software defined radio (SDR) technology. The implemented base station system processes baseband signals on a Graphics Processor Unit(GPU). GPU is a high-speed parallel processor which provides very important advantage of using a very powerful C-based programming environment that is Compute Unified Device Architecture (CUDA). The implemented software-based base station system processes baseband signals through GPU. It utilizes USRP2 as its RF transceiver. In order to guarantee a real-time processing of LTE baseband signals, we have adopted well-known signal processing algorithms such as frame synchronization algorithms, ML detection, etc. using GPU operating in parallel processing.

LLL Algorithm Aided Double Sphere MIMO Detection (LLL 알고리즘 기반 이중 스피어 MIMO 수신기)

  • Jeon, Myeongwoon;Lee, Jungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.377-380
    • /
    • 2012
  • 격자 감소 (lattice reduction) 알고리즘은 주어진 기저 벡터를 직교에 가까운 기저 벡터로 바꾸어 준다. 그중 대표적인 알고리즘으로 LLL (Lenstra, Lenstra & Lovasz) 알고리즘이 있다. 격자 감소 알고리즘을 이용하여 다중 안테나 입출력 (MIMO) 통신시스템의 선형 수신기(linear detector)의 성능을 향상 시킬 수 있다. 스피어 복호 알고리즘 (sphere decoding algorithm)은 MIMO 통신 시스템에서 사용되는 복호기중 최대 우도 복호기 (Maximum Likelihood Detector)와 비슷한 BER(bit error rate)성능을 가지고 복잡도를 줄일 수 있어서 많이 연구되어 왔다. 이때 스피어의 반지름의 설정이나 트리 검색 구조 방식 등은 복잡도에 큰 영향을 미친다. 본 논문에서는 LLL 알고리즘에 기반하여 스피어의 반지름 설정 및 트리 검색 노드 수를 제한하는 방식으로 스피어 복호 알고리즘의 복잡도를 기존 알고리즘에 비해 크게 낮추면서도 비트 오류률 (BER) 성능 열화를 최소한으로 한 알고리즘을 제안하고 전산 실험을 통해 검증한다.

  • PDF

M-ary QAM soft detection scheme for coded MIMO systems (부호화된 MIMO 시스템을 위한 M-ary QAM 연판정 검출 기법)

  • Kim, Young Min;Kim, Heung Mook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.337-338
    • /
    • 2012
  • 다중 안테나 전송 기술은 추가적인 대역폭의 필요 없이 다이버시티 이득을 얻을 수 있는 장점이 있다. 이러한 이유로 차세대 방송기술 및 이동 통신기술에서는 대용량 데이터 전송을 위하여 다중 안테나 전송기술을 채택하고 있다. 또 다른 차세대 무선 통신 시스템의 큰 특징은 무선 통신 환경에서 발생하는 다중 경로 및 무선 경로 페이딩에 의한 성능 저하를 극복하기 위하여 연판정 검출 값을 반복적으로 사용하는 오류정정부호의 사용에 있다. 이 경우에 수신단에서 MIMO 검출 후 수행되는 터보 부호에 대한 복호 과정에서 연판정 입력이 필요하고, 이 연판정 입력 값이 복호 성능에 큰 영향을 미치기 때문에 효율적인 연판정 검출 값이 필요로 한다. 본 논문에서는 MIMO 검출 후 M-ary QAM 복조시 경판정 경계를 이용한 연판정 검출방법을 이용하여 적은 연산을 요구하는 M-ary QAM 의 연판정 검출 방식을 제안한다.

  • PDF

Performance Analysis of LR-aided ZF Receiver for MIMO Systems

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.37-43
    • /
    • 2018
  • Lattice-reduction (LR) techniques have been developed for signal detection in spatial multiplexing multiple input multiple output (MIMO) systems to obtain the largest diversity gain. Thus, an LR-assisted zero-forcing (ZF) receiver can achieve the maximum diversity gain in spatial multiplexing MIMO systems. In this paper, a simplified analysis of the achievable diversity gain is presented by fitting the channel coefficients lattice-reduced by a complex Lenstra-Lenstra-$Lov{\acute{a}}z$ (LLL) algorithm into approximated Gaussian random variables. It will be shown that the maximum diversity gain corresponding to two times the number of receive antennas can be achieved by the LR-based ZF detector. In addition, the approximated bit error rate (BER) expression is also derived. Finally, the analytical BER performance is comparatively studied with the simulated results.

Detection of Human Vital Signs and Estimation of Direction of Arrival Using Multiple Doppler Radars

  • An, Yong-Jun;Jang, Byung-Jun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.250-255
    • /
    • 2010
  • This paper presents a non-contact measurement method of vital signal by the use of multiple-input multiple-output (MIMO) bio-radar system, configured with two antennas that are separated by a certain distance. The direction of arrival (DOA) estimation algorithm for coherent sources was applied to detect vital signals coming from different spatial angles. The proposed MIMO bio-radar system was composed of two identical transceivers sharing single VCO with a PLL. In order to verify the performance of the system, the DOA estimation experiment was completed with respect to the human target at angles varying between $-50^{\circ}$ and $50^{\circ}$ where the bio-radar system was placed at distances (corresponding to 50 cm and 95 cm) in front of a human target. The proposed MIMO bio-radar system can successfully find the direction of a human target.

Incremental Antenna Selection Based on Lattice-Reduction for Spatial Multiplexing MIMO Systems

  • Kim, Sangchoon
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • Antenna selection is a method to enhance the performance of spatial multiplexing multiple-input multiple-output (MIMO) systems, which can achieve the diversity order of the full MIMO systems. Although various selection criteria have been studied in the literature, they should be adjusted to the detection operation implemented at the receiver. In this paper, antenna selection methods that optimize the post-processing signal-to-noise ratio (SNR) and eigenvalue are considered for the lattice reduction (LR)-based receiver. To develop a complexity-efficient antenna selection algorithm, the incremental selection strategy is adopted. Moreover, for improvement of performance, an additional iterative selection method is presented in combination with an incremental strategy.

An Adaptive K-best Algorithm Based on Path Metric Comparison for MIMO Systems (MIMO System을 위한 Path Metric 비교 기반 적응형 K-best 알고리즘)

  • Kim, Bong-Seok;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11A
    • /
    • pp.1197-1205
    • /
    • 2007
  • An adaptive K-best detection scheme is proposed for MIMO systems. The proposed scheme changes the number of survivor paths, K based on the degree of the reliability of Zero-Forcing (ZF) estimates at each K-best step. The critical drawback of the fixed K-best detection is that the correct path's metric may be temporarily larger than K minimum paths metrics due to imperfect interference cancellation by the incorrect ZF estimates. Based on the observation that there are insignificant differences among path metrics (ML distances) when the ZF estimates are incorrect, we use the ratio of the minimum ML distance to the second minimum as a reliability indicator for the ZF estimates. So, we adaptively select the value of K according to the ML distance ratio. It is shown that the proposed scheme achieves the significant improvement over the conventional fixed K-best scheme. The proposed scheme effectively achieves the performance of large K-best system while maintaining the overall average computation complexity much smaller than that of large K system.

Systolic Arrays for Lattice-Reduction-Aided MIMO Detection

  • Wang, Ni-Chun;Biglieri, Ezio;Yao, Kung
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.481-493
    • /
    • 2011
  • Multiple-input multiple-output (MIMO) technology provides high data rate and enhanced quality of service for wireless communications. Since the benefits from MIMO result in a heavy computational load in detectors, the design of low-complexity suboptimum receivers is currently an active area of research. Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-complexity method with near-maximum-likelihood performance. In this paper, we advocate the use of systolic array architectures for MIMO receivers, and in particular we exhibit one of them based on LRAD. The "Lenstra-Lenstra-Lov$\acute{a}$sz (LLL) lattice reduction algorithm" and the ensuing linear detections or successive spatial-interference cancellations can be located in the same array, which is considerably hardware-efficient. Since the conventional form of the LLL algorithm is not immediately suitable for parallel processing, two modified LLL algorithms are considered here for the systolic array. LLL algorithm with full-size reduction-LLL is one of the versions more suitable for parallel processing. Another variant is the all-swap lattice-reduction (ASLR) algorithm for complex-valued lattices, which processes all lattice basis vectors simultaneously within one iteration. Our novel systolic array can operate both algorithms with different external logic controls. In order to simplify the systolic array design, we replace the Lov$\acute{a}$sz condition in the definition of LLL-reduced lattice with the looser Siegel condition. Simulation results show that for LR-aided linear detections, the bit-error-rate performance is still maintained with this relaxation. Comparisons between the two algorithms in terms of bit-error-rate performance, and average field-programmable gate array processing time in the systolic array are made, which shows that ASLR is a better choice for a systolic architecture, especially for systems with a large number of antennas.

Novel Turbo Receiver for MU-MIMO SC-FDMA System

  • Wang, Hung-Sheng;Ueng, Fang-Biau;Chang, Yu-Kuan
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.309-317
    • /
    • 2018
  • Single carrier-frequency-division multiple access (SC-FDMA) has been adopted as the uplink transmission standard in fourth-generation cellular networks to facilitate power efficiency transmission in mobile stations. Because multiuser multiple-input multiple-output (MU-MIMO) is a promising technology employed to fully exploit the channel capacity in mobile radio networks, this study investigates the uplink transmission of MU-MIMO SC-FDMA systems with orthogonal space-frequency block codes (SFBCs). It is preferable to minimize the length of the cyclic prefix (CP). In this study, the chained turbo equalization technique with chained turbo estimation is employed in the designed receiver. Chained turbo estimation employs a short training sequence to improve the spectrum efficiency without compromising the estimation accuracy. In this paper, we propose a novel and spectrally efficient iterative joint-channel estimation, multiuser detection, and turbo equalization for an MU-MIMO SC-FDMA system without CP-insertion and with short TR. Some simulation examples are presented for the uplink scenario to demonstrate the effectiveness of the proposed scheme.

Bandwidth-Efficient Selective Retransmission for MIMO-OFDM Systems

  • Zia, Muhammad;Kiani, Tamoor;Saqib, Nazar A.;Shah, Tariq;Mahmood, Hasan
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.66-76
    • /
    • 2015
  • In this work, we propose an efficient selective retransmission method for multiple-input and multiple-output (MIMO) wireless systems under orthogonal frequency-division multiplexing (OFDM) signaling. A typical received OFDM frame may have some symbols in error, which results in a retransmission of the entire frame. Such a retransmission is often unnecessary, and to avoid this, we propose a method to selectively retransmit symbols that correspond to poor-quality subcarriers. We use the condition numbers of the subcarrier channel matrices of the MIMO-OFDM system as a quality measure. The proposed scheme is embedded in the modulation layer and is independent of conventional hybrid automatic repeat request (HARQ) methods. The receiver integrates the original OFDM and the punctured retransmitted OFDM signals for more reliable detection. The targeted retransmission results in fewer negative acknowledgements from conventional HARQ algorithms, which results in increasing bandwidth and power efficiency. We investigate the efficacy of the proposed method for optimal and suboptimal receivers. The simulation results demonstrate the efficacy of the proposed method on throughput for MIMO-OFDM systems.