• Title/Summary/Keyword: MIMO(Multiple-Input-Multiple-Output)

Search Result 668, Processing Time 0.027 seconds

Enhanced Spatial Covariance Matrix Estimation for Asynchronous Inter-Cell Interference Mitigation in MIMO-OFDMA System (3GPP LTE MIMO-OFDMA 시스템의 인접 셀 간섭 완화를 위한 개선된 Spatial Covariance Matrix 추정 기법)

  • Moon, Jong-Gun;Jang, Jun-Hee;Han, Jung-Su;Kim, Sung-Soo;Kim, Yong-Serk;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5C
    • /
    • pp.527-539
    • /
    • 2009
  • In this paper, we propose an asynchonous ICI (Inter-Cell Interference) mitigation techniques for 3GPP LTE MIMO-OFDMA down-link receiver. An increasing in symbol timing misalignments may occur relative to sychronous network as the result of BS (Base Station) timing differences. Such symbol synchronization errors that exceed the guard interval or the cyclic prefix duration may result in MAI (Multiple Access Interference) for other carriers. In particular, at the cell boundary, this MAI becomes a critical factor, leading to degraded channel throughput and severe asynchronous ICI. Hence, many researchers have investigated the interference mitigation method in the presence of asynchronous ICI and it appears that the knowledge of the SCM (Spatial Covariance Matrix) of the asynchronous ICI plus background noise is an important issue. Generally, it is assumed that the SCM estimated by using training symbols. However, it is difficult to measure the interference statistics for a long time and training symbol is also not appropriate for MIMO-OFDMA system such as LTE. Therefore, a noise reduction method is required to improve the estimation accuracy. Although the conventional time-domain low-pass type weighting method can be effective for noise reduction, it causes significant estimation error due to the spectral leakage in practical OFDM system. Therefore, we propose a time-domain sinc type weighing method which can not only reduce the noise effectively minimizing estimation error caused by the spectral leakage but also implement frequency-domain moving average filter easily. By using computer simulation, we show that the proposed method can provide up to 3dB SIR gain compared with the conventional method.

DFT-based Channel Estimation Scheme for Sidelink in D2D Communication (D2D 통신에서 사이드링크를 위한 DFT 기반 채널 추정 기법)

  • Moon, Sangmi;Chu, Myeonghun;Kim, Hanjong;Kim, Daejin;Kim, Cheolsung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.22-31
    • /
    • 2015
  • Recently, 3rd Generation Partnership Project (3GPP) has developed device-to-device (D2D) communication to cope with the explosively increasing mobile data traffic. The D2D communication uses sidelink based on single carrier-frequency division multiple access (SC-FMDA) due to its low peak-to-average power ratio (PAPR). In addition, demodulation reference signal (DMRS) is designed to support multiple input multiple output (MIMO). In this paper, we propose the DFT-based channel estimation scheme for sidelink in D2D communication. The proposed scheme uses the 2-Dimensional Minimum Mean Square Error (2-D MMSE) interpolation scheme for the user moving at a high speed. We perform the system level simulation based on 20MHz bandwidth of 3GPP LTE-Advanced system. Simulation results show that the proposed channel estimation scheme can improve signal-to-interference-plus-noise ratio (SINR), throughput and spectral efficiency of conventional scheme.

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.

Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator (3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계)

  • Kim, Jin-Wan;Xuan, Dong-Ji;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

Transceiver Design Method for Finitely Large Numbers of Antenna Systems (유한 대용량 안테나 시스템에서 송수신기 설계 방법)

  • Shin, Joonwoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.280-285
    • /
    • 2015
  • We consider a linear transceiver design method for multi-user multiple-input multiple-output (MIMO) downlink channels where a base station (BS) equipped with a finitely large number of antennas. Although a matched-filter precoder is a capacity-achieving method in massive MIMO downlink systems, it cannot guarantee to achieve the multi-user MIMO capacity in a finitely large number of antennas due to inter-user interferences. In this paper, we propose a two-stage precoder design method that maximizes the sum-rate of cell-edge users when the BS equipped with a finitely large number of antennas. At the first stage, a matched-filter precoder is adopted to exploit both beamforming gain and the reduction of the dimension of effective channels. Then, we derive the second stage precoder that maximizes the sum-rate by minimizing the weighted mean square error (WMSE). From simulation and analysis, we verify the effectiveness of the proposed method.

Analysis of IEEE 802.11n MAC and PHY Integration Method for High Throughput Performance based on NS-2 (고속 처리량을 위한 NS-2 기반 IEEE 802.11n MAC/PHY 연동 기법분석)

  • Kim, Joo-Seok;Lee, Yun-Ho;Song, Jae-Su;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.67-75
    • /
    • 2009
  • IEEE 802.11 WLAN(Wireless Local Area Network) standard is currently developing with increased wireless internet demand. Study trends of IEEE 802.11n for high throughput show two aspects, enhanced system throughput using aggregation among packets in MAC(Medium Access Control) layer, and better data rates adapting MIMO(Multiple-Input Multiple-Output) in PRY(Physical) layer. But, no one demonstrates IEEE 802.11n system performance results considering MAC and PRY connection. This paper adapts A-MPDU(Aggregation-MAC Protocol Data Unit) method in MAC layer and MIMO in PRY layer for IEEE 802.11n system. Consequently, Simulation results show enhanced throughput and data rates compared to existing system. Also, We use NS-2(Network Simulator-2) considering MAC and PRY connection for reality.

Design and Performance Gain Evaluation of a Multi-Rank Codebook Utilizing Statistical Properties of the Spatial Channel Model (공간 채널 모델의 통계적 특성을 반영한 다중 랭크 코드북의 설계 및 성능 이득 평가)

  • Kim, Changhyeon;Sung, Wonjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.723-731
    • /
    • 2016
  • A core technological base to provide enhanced data rates required by 5G mobile wireless communications is the improved bandwidth efficiency using massive multiple-input multiple-output (MIMO) transmission. MIMO transmission requires the channel estimation using the channel state information reference signaling (CSI-RS) and appropriate beamforming, thus the design of the codebook defining proper beamforming vectors is an important issue. In this paper, we propose a multi-rank codebook based on the discrete Fourier transform (DFT) matrix, by utilizing statistical properties of the channel generated by the spatial channel model (SCM). The proposed method includes a structural change of the precoding matrix indicator (PMI) by considering the phase difference distributions between adjacent antenna elements, as well as the selected codevector characteristics of each transmission layer. Performance gain of the proposed method is evaluated and verified by making the performance comparison to the 3GPP standard codebooks adopted by Long-Term Evolution (LTE) systems.

Energy Saving MAC for MIMO Wireless Systems (다중 안테나 이동 통신 시스템을 위한 전력 절감 기법)

  • Ryoo, Sun-Heui;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.247-254
    • /
    • 2009
  • Over the last decade multiple-input and multiple-output (MIMO) systems have been actively researched and started to be deployed in wireless communications owing to the significant increase in channel capacity. In this paper, we propose a energy saving MAC protocol in systems by focusing on energy efficiency instead of capacity maximization. We considers the energy consumption together with the tradeoff between reliability (i.e., diversity) and throughput (i.e., multiplexing gain), and dynamically chooses an appropriate number of antennas for transmission. In computing the total energy consumption, we counts circuit energy as well as transmission energy. Naturally the circuit energy consumption is directly proportional to the number of active antennas. Through numerical analysis, we confirm that our power saving MAC scheme for MIMO considerably saves energy consumption compared to conventional capacity maximization schemes that use a fixed number of MIMO channels, for a given outage constraint. Our finding is that the capacity maximizing communication which possibly can be regarded best in terms of energy efficiency gives a different solution from the energy minimizing communication.

Analysis of Spatial Modulation MIMO Reception Performance for UHDTV Broadcasting (UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.837-847
    • /
    • 2015
  • In this paper, the reception performance of spatial modulation multiple-output multiple-input (MIMO) is analyzed for high speed terrestrial broadcasting. The MIMO scheme is required to reduce the inter symbol interference (ISI) and spatial correlation. The spatial modulation scheme solves the problem of ISI, but the spatial correlation degrades the reception performance of SM scheme. The space-time block coded spatial modulation (STBC-SM) is combined the SM system with space-time block code (STBC) for reducing the effects of the spatial correlation. However, the STBC-SM scheme degrades the spectral efficiency by transmitting same data in the two symbol period. The double space-time transmit diversity with spatial modulation (DSTTD-SM) scheme transmits the data with full antenna combination. To adapt these SM MIMO systems into the terrestrial broadcasting system, the reception performance is analyzed using computer simulation in SUI channel environments.

Performance Analysis of MIMO-OFDM System over Nakagami Fading Channel (나카가미 페이딩 채널하에서 MIMO-OFDM 시스템의 성능분석)

  • Kang, Kyung-Sik;Kim, Won-Sub;Park, Chun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1797-1804
    • /
    • 2011
  • In this paper, I analyzed array organization of MIMO channel antenna and effect of operation environment by evaluating average BER from linear Space-Time Block Code orthogonal design and suggests designing condition of MT antenna for improved BER and the fading index m. To analyze system performance, I used M-PSK and M-QAM modulation, and to use analysis equations I used integrated by Nakagami fading variable, non-integrated Nakagami fading variable. We can get the organization of channel array by using mathematical calculation on matrix. STBE BER performance will decrease as AOA spreading decrease and such loss can be compensated from extending antenna spacing, and changing array organization.