• Title/Summary/Keyword: MICs

Search Result 303, Processing Time 0.024 seconds

Heavy Metal Tolerance of Fungi Isolated from Contaminated Soil

  • Joo, Jin-Ho;Hussein, Khalid A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.565-571
    • /
    • 2012
  • This study was conducted to investigate the tolerance of some resistant fungal strains from soils contaminated with heavy metals. Various fungal strains were isolated from soil samples collected from studied sites which heavy metals and other pollutants have been emitted in effluents for several years. Fungi isolated belong to different genera; however, Penicillium spp. showed the most frequent species. The microbial number was remarkably higher in the control soil than contaminated soil samples collected from mining areas. $Pb^{2+}$ and $Zn^{2+}$ had the highest concentration in the polluted soils ranging from 89 - 3,521 ppm and 98 - 4,383 ppm, respectively. The minimum inhibition concentrations (MICs) of $Pb^{+2}$ and $Zn^{+2}$ showed the highest values against the fungal strains. $Ni^{+2}$ and $Co^{+2}$ were the lowest contaminants in the polluted soils with the concentration of 5 to 12.1 ppm and 1.8 to 4.8 ppm, respectively. The tested resistant strains showed the strongest inhibition for $Ni^{+2}$ and $Co^{+2}$ up to 200-400 ppm. Cadmium was the most highly toxic heavy metal for most of strains, however, 1 mM of $Cr^{3+}$, $Cu^{2+}$ and $Pb^{2+}$ accelerated the growth of Penicillium verrucosum KNU3. $Cu^{+2}$ and $Zn^{+2}$ at concentration of 1 mM did not affect the growth rate P. funiculosum KNU4. Tolerance of fungal species to heavy metals appears to be strain and origin dependent.

Antibacterial properties of quinolones

  • Yoshida, Hiroaki
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.40-47
    • /
    • 1997
  • New quinolones generally have a broad antibacterial spectrum against gram-positive, gram-negative, glucose-nonfermenting and anaerobic bacteria. Some of newly developed quinolones have potent activities against S. aureus including MRSA, S.pneumoniae including PRSP, B. fragilis, chlamydiae, mycoplasmas and mycobacteria as well, and show good activities against various strains resistant to antibacterial agents of other classes. Quinolones display postantibiotic effects in vitro and are bactericidal at concentrations similar to or twice that of the minimum inhibitory concentrations (MICs) for susceptible pathogens. In experimental murine infection models including systemic infections with various pathogens such as S. aureus, S. pyogenes, S. pneumoniae, E. coli and P. aeruginosa, quinolones have shown good oral efficacy as well as parenteral efficacy. Good oral absorption and good tissue penetration of quinolones account for good therapeutic effects in clinical settings. The target of quinolones are two structurally related type II topoisomerases, DNA gyrase and DNA topoisomerase IV. Quinolones are shown to stabilize the ternary quinolone-gyrase-DNA complex and inhibit the religation of the cleaved double-stranded DNA. Bacteria can acquire resistance to quinolones by mutations of these target enzymes. Mutation sites and amino acid changes in DNA gyrase and DNA topoisomerase IV are similar in the organisms examined, suggesting that the mechanism of quinolone resistance in the target enzymes is essentially the same among various organisms. Quinolones act on both the target enzymes to different degrees depending on the organisms or agents tested, and bacteria become highly resistant to quinolones in a step-wise fashion. Incomplete cross-resistance among quinolones in some strains of E. coli and S. aureus suggests the possibility of finding quinolones active against quinolone-resistant strains which are prevailing now. To find such quinolones, the potency toward two target enzymes and the membrane permeability including influx and/or efflux systems should be taken into account.

  • PDF

Compound IKD-8344, a Selective Growth Inhibitor Against the Mycelial Form of Candida albicans, Isolated from Streptomyces sp. A6792

  • HWANG EUI IL;YUN BONG SIK;YEO WOON HYUNG;LEE SANG HAN;MOON JAE SUN;KIM YOUNG KOOK;LIM SE JIN;KIM SUNG UK
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.909-912
    • /
    • 2005
  • In the course of screening for selective growth inhibitors against the mycelial form of Candida albicans, we isolated a Streptomyces sp. A6792 from soils. The inhibitor was isolated from the above bacterium and identified through several spectral analyses with UV and mass spectrophotometries, and various NMR. The compound was determined to be a macrocyclic dilactone antibiotic, IKD-8344 (molecular weight: 844, molecular formula: $C_{48}H_{76}O_{12}$). The compound selectively inhibited the growth of mycelial form of C. albicans with an MIC of 6.25 ${\mu}g/ml$. It also exhibited strong inhibitory effect preferentially on the mycelial form of various Candida spp. including C. krusei, C. tropicalis, and C. lusitaniae, with MICs ranging from 1.56 to 25 ${\mu}g$/ml. Furthermore, the compound showed no significant toxicity against SPF ICR mice up to 60 mg/kg. These results suggest that IKD-8344 is a useful lead compound for the development of novel antifungal agents, based on the preferential growth inhibition against Candida spp.

Antimicrobial Activities of 1,4-Benzoquinones and Wheat Germ Extract

  • Kim, Myung-Hee;Jo, Sung-Hoon;Ha, Kyoung-Soo;Song, Ji-Hye;Jang, Hae-Dong;Kwon, Young-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1204-1209
    • /
    • 2010
  • We evaluated the antibacterial activities of selected edible Korean plant seeds against the food-borne pathogens Staphylococcus aureus KCTC1927, Escherichia coli KCTC2593, Salmonella typhimurium KCTC2054, and Bacillus cereus KCTC1014. While screening for antibacterial agents, we discovered that wheat germ extract contains 2,6-dimethoxy-1,4-benzoquinone (DMBQ) and is highly inhibitory to S. aureus and B. cereus. This is the first report of the antibacterial activity of wheat germ extract. We also investigated the antibacterial activities of the 1,4-benzoquinone standards 1,4-benzoquinone (BQ), hydroquinone (HQ), methoxybenzoquinone (MBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMBQ). DMBQ and BQ were the most highly inhibitory to S. aureus and S. typhimurium, followed by MBQ and HQ. MICs for DMBQ and BQ ranged between 8 and 64 ${\mu}g/ml$ against the four foodborne pathogens tested. DMBQ and BQ showed significant antibacterial activity; the most sensitive organism was S. aureus with an MIC of 8 ${\mu}g/ml$. BQ exhibited good activity against S. typhimurium (32 ${\mu}g/ml$) and B. cereus (32 ${\mu}g/ml$). The results suggest that wheat germ extract has potential for the development of natural antimicrobials and food preservatives for controlling foodborne pathogens.

Distribution of Pseudomonas-Derived Cephalosporinase and Metallo-β-Lactamases in Carbapenem-Resistant Pseudomonas aeruginosa Isolates from Korea

  • Cho, Hye Hyun;Kwon, Gye Cheol;Kim, Semi;Koo, Sun Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1154-1162
    • /
    • 2015
  • The emergence of carbapenem resistance among Pseudomonas aeruginosa is an increasing problem in many parts of the world. In particular, metallo-$\beta$-lactamases (MBLs) and AmpC $\beta$lactamases are responsible for high-level resistance to carbapenem and cephalosporin. We studied the diversity and frequency of $\beta$-lactamases and characterized chromosomal AmpC $\beta$lactamase from carbapenem-resistant P. aeruginosa isolates. Sixty-one carbapenem-resistant P. aeruginosa isolates were collected from patients in a tertiary hospital in Daejeon, Korea, from January 2011 to June 2014. Minimum inhibitory concentrations (MICs) of four antimicrobial agents were determined using the agar-dilution method. Polymerase chain reaction and sequencing were used to identify the various $\beta$-lactamase genes, class 1 integrons, and chromosomally encoded and plasmid-mediated ampC genes. In addition, the epidemiological relationship was investigated by multilocus sequence typing. Among 61 carbapenem-resistant P. aeruginosa isolates, 25 isolates (41.0%) were MBL producers. Additionally, 30 isolates producing PDC (Pseudomonas-derived cephalosporinase)-2 were highly resistant to ceftazidime (MIC50 = $256{\mu}g/ml$) and cefepime (MIC50 = $256{\mu}g/ml$). Of all the PDC variants, 25 isolates harboring MBL genes showed high levels of cephalosporin and carbapenem resistance, whereas 36 isolates that did not harbor MBL genes revealed relatively low-level resistance (ceftazidime, p < 0.001; cefepime, p < 0.001; imipenem, p = 0.003; meropenem, p < 0.001). The coexistence of MBLs and AmpC $\beta$-lactamases suggests that these may be important contributing factors for cephalosporin and carbapenem resistance. Therefore, efficient detection and intervention to control drug resistance are necessary to prevent the emergence of P. aeruginosa possessing this combination of $\beta$-lactamases.

Insight into Norfloxacin Resistance of Acinetobacter oleivorans DR1: Target Gene Mutation, Persister, and RNA-Seq Analyses

  • Kim, Jisun;Noh, Jaemin;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1293-1303
    • /
    • 2013
  • Antibiotic resistance of soilborne Acinetobacter species has been poorly explored. In this study, norfloxacin resistance of a soil bacterium, Acinetobacter oleivorans DR1, was investigated. The frequencies of mutant appearance of all tested non-pathogenic Acinetobacter strains were lower than those of pathogenic strains under minimum inhibitory concentration (MIC). When the quinolone-resistance-determining region of the gyrA gene was examined, only one mutant (His78Asn) out of 10 resistant variants had a mutation. Whole transcriptome analysis using a RNA-Seq demonstrated that genes involved in SOS response and DNA repair were significantly up-regulated by norfloxacin. Determining the MICs of survival cells after norfloxacin treatment confirmed some of those cells were indeed persister cells. Ten colonies, randomly selected from among those that survived in the presence of norfloxacin, did not exhibit increased MIC. Thus, both the low mutation frequency of the target gene and SOS response under norfloxacin suggested that persister formation might contribute to the resistance of DR1 against norfloxacin. The persister frequency increased without a change in MIC when stationary phase cells, low growth rates conditions, and growth-deficient dnaJ mutant were used. Taken together, our comprehensive approach, which included mutational analysis of the target gene, persister formation assays, and RNA sequencing, indicated that DR1 survival when exposed to norfloxacin is related not only to target gene mutation but also to persister formation, possibly through up-regulation of the SOS response and DNA repair genes.

Effect of Rosemary Essential Oil and Trichoderma koningiopsis T-403 VOCs on Pathogenic Fungi Responsible for Ginseng Root Rot Disease

  • Hussein, Khalid Abdallah;Lee, Young-Don;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1018-1026
    • /
    • 2020
  • Rosemary essential oil was evaluated for antifungal potentiality against six major ginseng pathogens: Sclerotinia sclerotiorum, Sclerotinia nivalis, Cylindrocarpon destructans, Alternaria panax, Botrytis cinerea, and Fusarium oxysporum. The in vitro fungicidal effects of two commonly used fungicides, namely mancozeb and fenhexamid, and the volatile organic compounds (VOCs) of Trichoderma koningiopsis T-403 on the mycelial growth were investigated. The results showed that rosemary essential oil is active against all of the pathogenic strains of ginseng root rot, whereas rosemary oil displayed high ability to inhibit the Sclerotinia spp. growth. The highest sensitivity was S. nivalis, with complete inhibition of growth at 0.1% v/v of rosemary oil, followed by Alternaria panax, which exhibited 100% inhibition at 0.3% v/v of the oil. Minimum inhibitory concentrations (MICs) of rosemary oil ranged from 0.1 % to 0.5 % (v/v). Chemical analysis using GC-MS showed the presence of thirty-two constituents within rosemary oil from R. officinals L. Camphore type is the most frequent sesquiterpene in rosemary oil composition. Mancozeb and fenhexamid showed their highest inhibition effect (45% and 30%, respectively) against A. panax. T. koningiopsis T-403 showed its highest inhibition effect (84%) against C. destructans isolate. This study may expedite the application of antifungal natural substances from rosemary and Trichoderma in the prevention and control of phytopathogenic strains in ginseng root infections.

Antifungal and synergistic effects of an ethyl acetate extract of the edible brown seaweed Eisenia bicyclis against Candida species

  • Kim, Ki-Hyun;Eom, Sung-Hwan;Kim, Hyo-Jung;Lee, Dae-Sung;Nshimiyumukiza, Ossiniel;Kim, Dongsoo;Kim, Young-Mog;Lee, Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.209-214
    • /
    • 2014
  • With the continuing demand for new solutions in the development of effective and safe candidiasis therapies, we investigated the efficacy of an antifungal agent from the marine brown alga Eisenia bicyclis. The methanolic extract of E. bicyclis evinced potential antifungal activity against Candida species. The ethyl acetate (EtOAc)-soluble extract from E. bicyclis demonstrated the strongest antifungal activity against Candida species among five solvent-soluble extracts. Indeed, the EtOAc-soluble extract showed minimum inhibitory concentrations (MICs) ranging from 4 to 8 mg/mL. Furthermore, the EtOAc-soluble extract considerably reversed high-level fluconazole resistance of Candida species. The MIC values of fluconazole against Candida species decreased substantially (from 64 to $4{\mu}g/mL$) in combination with the MIC of the EtOAc-soluble extract (4 mg/mL). The fractional inhibitory concentration indices of fluconazole ranged from 0.531 to 0.625 in combination with 4, 2, or 1 mg/mL of the EtOAc-soluble extract against Candida isolates, indicating that these combinations exert a marked synergistic effect against Candida isolates. These findings imply that compounds derived from E. bicyclis can be a potential source of natural antifungal agents against Candida species.

Epidemiological Typing and Characterization of dfr Genes of Shigella sonnei Isolates in Korea During the Last Two Decades

  • Kim, Ki-Sung;Oh, Jae-Young;Jeong, Yong-Wook;Cho, Jae-We;Park, Jong-Chun;Cho, Dong-Teak
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2002
  • One-hundred and twenty-four trimethoprim-resistant Shigella sonnei isolates extracted in Korea during the last two decades were investigated for their epidemiological relationship and mechanisms of resistance to trimethoprim. The S. sonnei isolates were distributed into two groups by three different epidemiological tools: biotyping, antibiogram, and pulsed-field gel electrophoresis. One group contained the isolates from the 1980s and the other group included the isolates from the 1990s. The geometric mean MICs of trimethoprim in S. sonnei isolates from the 1980s and 1990s were found to be $672.9{\mu}g/ml\;and\;>2,048{\mu}g/ml$, respectively. Trimethoprim resistance was associated with dfrA5, dfrA12, and dfrA13 genes in the isolates from the 1980s, dfrA1, dfrA5, and dfrA12 in the isolates from 1991, and dfrA1 and dfrA12 in the isolates from 1992 to 1999. The dfrA1 gene was located downstream of the intI2 gene in Tn7, which was located on chromosome. Some dfrA12 genes were found as gene cassettes in the class 1 integron. The dfrA5 and dfrA13 genes were located on conjugative plasmids. These results suggested that a clonal change occurred in S. sonnei isolates in Korea during the last two decades and that dfr genes located on different transposable genetic elements had gradually changed.

Antimicrobial susceptibility features of porcine respiratory bacterial pathogens by modified broth dilution method (돼지 호흡기질병 병인체의 항균제 감수성 조사)

  • 송동준;서동균;이춘식;배영찬;김원일;김봉환
    • Korean Journal of Veterinary Service
    • /
    • v.23 no.1
    • /
    • pp.19-28
    • /
    • 2000
  • There are several main antibacterial susceptibility tests, such as agar dilution method, broth dilution method and disk diffusion technique. Especially, for minimal inhibitory concentration (MIC) test, agar dilution method has been widely used. But that method is so complicated and bothering that it's difficult to treat a large amount of strains. On the other hand, modified broth dilution method(add 1% glucose and 0.018% phenol red as a pH indicator to broth) is fast and easy to perform. Most of all, it can visualize the result by color. The MICs of 22 antibiotics Including penicillins, aminoglycosides, cephalothin, chloramphenicol, lincomycin, ceftiofur, vancomycin and quinolones, erythromycin, colistin. sul-fadimethoxine, trimethoprim for arcanobacterium pyogenes 14 strains, actinobacillus pleuropneu-moniae 41 strains and pasteurella multocida 37 strains, which were collected from porcine during 1996 ∼ 1999, were determined by modified broth dilution method. Actinobacillus pleuropneumoniae was highly susceptible to all kinds of quinolones such as ciprofloxacin, enrofloxacin and norfloxacin and to all aminoglycosides, like gentamicin, apramycin, kanamycin and ampicillin, cephalothin and ceftiofur. But It was quite resistant to solfadimethoxin, colistin and vancomycin. Pasteurella multocida was found to have high susceptibility to ampicillin, cephalothin, chlorampenicol and gentamicin but had mid-degree susceptibility to other aminoglycosides. In addition, it was susceptible to norfloxacin and nalidixic acid, but not to newer fluoroquinolone like ciprofloxacin and enrofloxacin and it was resistant to colistin and kanamycin. Arcanobacterium pyogenes was highly susceptible to most of quinolones such as cipoofloxacin, enrofloxacin and norfloxacin and gentamicin and penicillin G. But it also obtained high resistance against the early quinolone, nalidixic acid and aminoglycosides such as amikacin, apramycin and kanamycin and erythromycin, chlorampenicol, tetracyclin and vancomycin.

  • PDF