• 제목/요약/키워드: MICROENVIRONMENT

검색결과 358건 처리시간 0.026초

Unraveling the hypoxia modulating potential of VEGF family genes in pan-cancer

  • So-Hyun Bae;Taewon Hwang;Mi-Ryung Han
    • Genomics & Informatics
    • /
    • 제21권4호
    • /
    • pp.44.1-44.10
    • /
    • 2023
  • Tumor hypoxia, oxygen deprivation state, occurs in most cancers and promotes angiogenesis, enhancing the potential for metastasis. The vascular endothelial growth factor (VEGF) family genes play crucial roles in tumorigenesis by promoting angiogenesis. To investigate the malignant processes triggered by hypoxia-induced angiogenesis across pan-cancers, we comprehensively analyzed the relationships between the expression of VEGF family genes and hypoxic microenvironment based on integrated bioinformatics methods. Our results suggest that the expression of VEGF family genes differs significantly among various cancers, highlighting their heterogeneity effect on human cancers. Across the 33 cancers, VEGFB and VEGFD showed the highest and lowest expression levels, respectively. The survival analysis showed that VEGFA and placental growth factor (PGF) were correlated with poor prognosis in many cancers, including kidney renal cell and liver hepatocellular carcinoma. VEGFC expression was positively correlated with glioma and stomach cancer. VEGFA and PGF showed distinct positive correlations with hypoxia scores in most cancers, indicating a potential correlation with tumor aggressiveness. The expression of miRNAs targeting VEGF family genes, including hsa-miR-130b-5p and hsa-miR-940, was positively correlated with hypoxia. In immune subtypes analysis, VEGFC was highly expressed in C3 (inflammatory) and C6 (transforming growth factor β dominant) across various cancers, indicating its potential role as a tumor promotor. VEGFC expression exhibited positive correlations with immune infiltration scores, suggesting low tumor purity. High expression of VEGFA and VEGFC showed favorable responses to various drugs, including BLU-667, which abrogates RET signaling, an oncogenic driver in liver and thyroid cancers. Our findings suggest potential roles of VEGF family genes in malignant processes related with hypoxia-induced angiogenesis.

Th17 Cell and Inflammatory Infiltrate Interactions in Cutaneous Leishmaniasis: Unraveling Immunopathogenic Mechanisms

  • Abraham U. Morales-Primo;Ingeborg Becker;Claudia Patricia Pedraza-Zamora;Jaime Zamora-Chimal
    • IMMUNE NETWORK
    • /
    • 제24권2호
    • /
    • pp.14.1-14.26
    • /
    • 2024
  • The inflammatory response during cutaneous leishmaniasis (CL) involves immune and non-immune cell cooperation to contain and eliminate Leishmania parasites. The orchestration of these responses is coordinated primarily by CD4+ T cells; however, the disease outcome depends on the Th cell predominant phenotype. Although Th1 and Th2 phenotypes are the most addressed as steers for the resolution or perpetuation of the disease, Th17 cell activities, especially IL-17 release, are recognized to be vital during CL development. Th17 cells perform vital functions during both acute and chronic phases of CL. Overall, Th17 cells induce the migration of phagocytes (neutrophils, macrophages) to the infection site and CD8+ T cells and NK cell activation. They also provoke granzyme and perforin secretion from CD8+ T cells, macrophage differentiation towards an M2 phenotype, and expansion of B and Treg cells. Likewise, immune cells from the inflammatory infiltrate have modulatory activities over Th17 cells involving their differentiation from naive CD4+ T cells and further expansion by generating a microenvironment rich in optimal cytokines such as IL-1β, TGF-β, IL-6, and IL-21. Th17 cell activities and synergies are crucial for the resistance of the infection during the early and acute stages; however, if unchecked, Th17 cells might lead to a chronic stage. This review discusses the synergies between Th17 cells and the inflammatory infiltrate and how these interactions might destine the course of CL.

The contribution of the nervous system in the cancer progression

  • Hongryeol Park;Chan Hee Lee
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.167-175
    • /
    • 2024
  • Cancer progression is driven by genetic mutations, environmental factors, and intricate interactions within the tumor microenvironment (TME). The TME comprises of diverse cell types, such as cancer cells, immune cells, stromal cells, and neuronal cells. These cells mutually influence each other through various factors, including cytokines, vascular perfusion, and matrix stiffness. In the initial or developmental stage of cancer, neurotrophic factors such as nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor are associated with poor prognosis of various cancers by communicating with cancer cells, immune cells, and peripheral nerves within the TME. Over the past decade, research has been conducted to prevent cancer growth by controlling the activation of neurotrophic factors within tumors, exhibiting a novel attemt in cancer treatment with promising results. More recently, research focusing on controlling cancer growth through regulation of the autonomic nervous system, including the sympathetic and parasympathetic nervous systems, has gained significant attention. Sympathetic signaling predominantly promotes tumor progression, while the role of parasympathetic signaling varies among different cancer types. Neurotransmitters released from these signalings can directly or indirectly affect tumor cells or immune cells within the TME. Additionally, sensory nerve significantly promotes cancer progression. In the advanced stage of cancer, cancer-associated cachexia occurs, characterized by tissue wasting and reduced quality of life. This process involves the pathways via brainstem growth and differentiation factor 15-glial cell line-derived neurotrophic factor receptor alpha-like signaling and hypothalamic proopiomelanocortin neurons. Our review highlights the critical role of neurotrophic factors as well as central nervous system on the progression of cancer, offering promising avenues for targeted therapeutic strategies.

진동 자극을 통한 3T3-L1 지방전구세포의 갈변화에서 세포 간 접촉의 영향 (Effects of Cell-Cell Contact on Vibration Loading-induced Browning of 3T3-L1 Preadipocytes)

  • 노희진;정용찬;김가영;문은영;이은미;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권1호
    • /
    • pp.43-48
    • /
    • 2024
  • The prevalence of obesity and its complications is steadily increasing worldwide. It is essential to understand cellular level metabolism and microenvironment to treat diseases related to lipid metabolism. Mechanical loading can activate signaling pathway by stimulating cells, especially vibration loading known to inhibit adipogenesis, so it has been studied as a treatment for obesity. Also, vibration loading can affect the inside of the human body non-invasively. Another clue to reducing adipose tissue is browning, which means that white adipocytes changes to brown adipocyte. In this study, we design and developed a device that that can control cell-cell contact, and vibration simulation device. Using these two devices, we investigated responses of cells to vibration loading. Protein expression associated with browning and adipogenesis were analyzed. In conclusion, vibration loading can be transmitted through cell contact and loading applied to the cells can induce browning and inhibit adipogenesis of preadipocytes. These results suggest the possibility that vibrations could be a treatment for obesity.

Cyclophosphamide가 흰쥐 골수의 기질세포에서 Laminin-1의 발현에 미치는 영향 (Laminin-1 Expression in Bone Marrow Stromal Cells of Cyclophosphamide-treated Rat)

  • 이창훈;정호삼;백두진;황세진;김원규;윤지희;김종관
    • Applied Microscopy
    • /
    • 제32권4호
    • /
    • pp.385-398
    • /
    • 2002
  • 골수내 정상적인 혈구형성은 줄기세포와 주위의 미세환경 사이에 일어나는 상호작용에 의해서 좌우된다고 알려져 있다. 이때 미세환경은 성장요소, 기질세포 및 기질세포가 분비한 세포외기질의 복잡한 망상구조로 이루어져 있다. 골수의 세포외기질은 거대분자로 구성되어 있으며 이중 구성요소의 일부인 당단백이 혈구형성의 조절에 주요한 요소가 된다고 많은 학자들이 주장해 왔다. 골수의 기질을 이루고 있는 망상세포, 지방세포, 섬유모세포, 혈관내피세포 및 혈관주위세포 등이 분비하는 세포외기질에 여러종류의 laminin 동형체가 함유되어 있으며 여러 종류의 혈구형성에 주요한 역할을 한다는 연구보고가 있다. 저자는 골수내 종양을 치료하기 위해 빈번히 사용되는 cyclophosphamide가 골수에 미치는 영향을 규명하고자 실험동물의 혈구형성에 영향을 미치는 laminin-1의 발현의 변화를 골수의 기질세포에서 추적하고자 하였다. 건강한 SD계 흰쥐를 실험동물로 사용하여 cyclophosphamide를 체중 kg당 75 mg을 복강내로 1회 투여하고 3일, 1주, 3주 및 5주 후 희생하여 골수조직을 채취하여 면역조직염색법으로 염색하여 laminin-1의 골수내 분포의 변화를 관찰하였고, 일부 조직은 전자현미경표본을 제작하여 1차 항체(rabbit anti-laminin)로 반응시킨 후 직경 12 nm의 금과립이 섞인 제2차 항체(biotinylated goat anti-rabbit IgG)로 다시 반응시키고 uranyl acetate로 단일염색 후 전자현미경으로 관찰하여 다음과 같은 결과를 얻었다. 1. Cyclophosphamide 투여 후 3일 경과군의 흰쥐 골수조직은 정맥동이 확장 되었고, 일부 조직이 괴사되었으며, 혈구형성세포가 감소되었다. 망상조직과 지방세포사이의 조직에서 laminin-1의 면역반응이 강하게 나타났다. 2. Cyclophosphamide 투여 후 1주, 2주 및 5주 투여군의 골수에서 laminin-1의 약한 면역반응이 기질조직에 계속되었고 혈구형성세포의 수는 증가되었다. 3. Laminin-1의 면역반응을 나타내는 금과립은 cyclophosphamide 투여 3일군의 골수 기질세포에서 가장 많은 수가 관찰되었고, 투여 1주, 3주 및 5주군에서는 금과립의 수량이 감소되었다. 이상과 같은 실험결과는 cyclophosphamide가 흰쥐에 투여되었을 때 골수의 혈구형성의 미세환경을 유지하는 기질세포의 laminin-1의 발현을 증가시키는 것으로 생각되었다.

상황버섯에 의해 활성화된 RAW 264.7 대식세포주 배양액의 인간 전립선암 세포주의 epithelial-mesenchymal transition 조절 (Conditioned Media of RAW 264.7 Cells Stimulated with Phellinus linteus Extract Regulates the Epithelial-mesenchymal Transition in Prostate Cancer Cells)

  • 강태우;안현희;박슬기;유선녕;황유림;김지원;안순철
    • 생명과학회지
    • /
    • 제29권8호
    • /
    • pp.904-915
    • /
    • 2019
  • 전립선암은 전이성 종양 중의 하나로 치료를 위해 호르몬 요법이나 외과 적 거세 방법이 주로 수행되지만 많은 부작용을 나타내었다. 최근 많은 연구자들이 이러한 상황을 해결하기 위해 종양 미세 환경을 연구하고 있으며 그 중 면역 세포, 특히 대식세포는 종양 미세 환경의 중요한 구성요소이다. 정상적인 조건에서 대식세포는 여러 암세포에 대해 약한 종양 살균 활성을 갖으나 $interferon-{\gamma}$ 또는 lipopolysaccharide에 의해 활성화되면, 염증성 사이토카인 및 케모카인을 분비함으로써 암세포를 직접 또는 간접적으로 사멸 시키게 된다. 본 연구에서는, 마우스 대식세포인 RAW 264.7 세포에 Phellinus linteus 추출물을 처리하여 산화질소의 방출과 pro-inflammatory cytokine들을 real-time PCR과 ELISA 방법으로 분석하였다. RAW 264.7의 조정 배지는 48시간 동안 전립선 암세포처리하여 상피간엽세포전이 관련 유전자의 발현을 측정 하였다. 그 때에 mesenchymal 관련 유전자들인 N-cadherin, snail, twist, slug 및 cadherin 11이 감소했을 뿐만 아니라 epithelial 관련 유전자인 E-cadherin은 증가하였다. 또한 암 전이 및 신생 혈관 형성에 관여하는 vimentin, ccl2 및 vegfa가 감소되었는데, 이는 EMT가 암세포의 이동과 침범에 밀접한 관련이 있기 때문이다. 따라서 Phellinus linteu에 의해 자극된 RAW 264.7 세포의 조정 배지는 인간 전립선 암세포주인 PC-3 세포의 이동과 전이를 억제하고 EMT 경로를 조절한다는 것을 나타낸다.

시간활동 양상과 국소환경 농도를 이용한 근로자의 유해 공기오염물질 노출 예측 (Estimation of Personal Exposure to Air Pollutants for Workers Using Time Activity Pattern and Air Concentration of Microenvironments)

  • 이현수;이석용;이병준;허정;김순신;양원호
    • 한국산업보건학회지
    • /
    • 제24권4호
    • /
    • pp.436-445
    • /
    • 2014
  • Objectives: Time-activity studies have become an integral part of comprehensive exposure assessment and personal exposure modeling. The aims of this study were to estimate exposure levels to nitrogen dioxide($NO_2$) and volatile organic compounds(VOCs), and to compare estimated exposures by using time-activity patterns and indoor air concentrations. Methods: The major microenvironments for office workers were selected using the Time-Use Survey conducted by the National Statistical Office in Korea in 2009. A total of 9,194 and 6,130 workers were recruited for weekdays and weekends, respectively, from the Time-Use Survey. It appears that workers were spending about 50% of their time in the house and about 30% of their time in other indoor areas during the weekdays. In addition, we analyzed the time-activity patterns of 20 office workers and indoor air concentrations in Daegu using a questionnaire and time-activity diary. Estimated exposures were compared with measured concentrations using the time-weighted average analysis of air pollutants. Conclusions: According to the time-activity pattern for the office workers, time spent in the residence indoors during the summer and winter have been shown as $11.12{\pm}2.20$ hours and $12.48{\pm}1.77$ hours, respectively, which indicates higher hours in the winter. Time spent in the office in the summer has been shown to be 1.5 hours higher than in the winter. The target pollutants demonstrate a positive correlation ($R^2=0.076{\sim}0.553$)in the personal exposure results derived from direct measurement and estimated personal exposure concentrations by applying the time activity pattern, as well as measured concentration of the partial environment to the TWA model. However, these correlations were not statistically significant. This may be explained by the difference being caused by other indoor environments, such as a bar, cafe, or diner.

CCR7 Ligand의 Memory CD4+ T 세포 증가유도 및 바이러스 감염에 대한 방어효과 (CCR7 Ligands Induced Expansion of Memory CD4+ T Cells and Protection from Viral Infection)

  • 어성국;조정곤
    • IMMUNE NETWORK
    • /
    • 제3권1호
    • /
    • pp.29-37
    • /
    • 2003
  • Background: CC chemokine receptor (CCR) 7 and cognate CCR7 ligands, CCL21 (formerly secondary lymphoid tissue chemokine [SLC]) and CCL19 (formerly Epstein-Barr virus-induced molecule 1 ligand chemokine [ELC]), were known to establish microenvironment for the initiation of immune responses in secondary lymphoid tissue. As described previously, coadministration of DNA vaccine with CCR7 ligand-encoding plasmid DNA elicited enhanced humoral and cellular immunity via increasing the number of dendritic cells (DC) in secondary lymphoid tissue. The author hypothesized here that CCR7 ligand DNA could effectively expand memory CD4+ T cells to protect from viral infection likely via increasing DC number. Methods: To evaluate the effect of CCR7 ligand DNA on the expansion of memory CD4+ T cells, DO11.10.BALB/c transgenic (Tg)-mice, which have highly frequent ovalbumin $(OVA)_{323-339}$ peptide-specific CD4+ T cells, were used. Tg-mice were previously injected with CCR7 ligand DNA, then immunized with $OVA_{323-339}$ peptide plus complete Freund's adjuvant. Subsequently, memory CD4+ T cells in peripheral blood lymphocytes (PBL) were analyzed by FACS analysis for memory phenotype ($CD44^{high}$ and CD62 $L^{low}$) at memory stage. Memory CD4+ T cells recruited into inflammatory site induced with OVA-expressing virus were also analyzed. Finally, the protective efficacy against viral infection was evaluated. Results: CCR7 ligand DNA-treated Tg-mice showed more expanded $CD44^{high}$ memory CD4+ T cells in PBL than control vector-treated animals. The increased number of memory CD4+ T cells recruited into inflammatory site was also observed in CCR7 ligand DNA-treated Tg-mice. Such effectively expanded memory CD4+ T cell population increased the protective immunity against virulent viral infection. Conclusion: These results document that CCR7 and its cognate ligands play an important role in intracellular infection through establishing optimal memory T cell. Moreover, CCR7 ligand could be useful as modulator in DNA vaccination against viral infection as well as cancer.

Effects of Leptin on Osteoclast Generation and Activity

  • Ko, Seon-Yle;Cho, Sang-Rae;Kim, Se-Won;Kim, Jung-Keun
    • International Journal of Oral Biology
    • /
    • 제30권2호
    • /
    • pp.47-57
    • /
    • 2005
  • Leptin, the product of the obese gene, is a circulating hormone secreted primarily from adipocytes. Several results suggest that leptin is important mediators of bone metabolism. The present study was undertaken to determine the effects of leptin on anti-osteoclastogenesis using murine precursors cultured on Ca-P coated plates and on the production of osteoprotegerin (OPG) in osteoblastic cells. Additionally, this study examined the possible involvement of prostaglandin $E_2\;(PGE_2)$/protein kinase C (PKC)-mediated signals on the effect of leptin on anti-osteoclastogenesis to various culture systems of osteoclast precursors. Osteoclast generation was determined by counting tartrate-resistant acid phosphatase positive [TRAP (+)] multinucleated cells (MNCs). Osteoclastic activity was determined by measuring area of resorption pits formed by osteoclasts on Ca-P coated plate. The number of 1,25-dihydroxycholecalciferol $(1,25[OH]_2D_3)$- or $PGE_2$-induced TRAP (+) MNCs in the mouse bone marrow cell culture decreased significantly after treatment with leptin. The number of receptor activator of NF-kB ligand (RANKL)-induced TRAP (+) MNCs in M-CSF dependent bone marrow macrophage (MDBM) cell or RAW264.7 cell culture decreased significantly with leptin treatment. Indomethacin inhibited osteoclast generation induced by $1,25[OH]_2D_3$ and dexamethasone, however, no significant differences were found in the leptin treated group when compared to the corresponding indomethacin group. Phorbol 12-myristate 13-acetate (PMA), a PKC activator, inhibited osteoclast generation induced by $1,25[OH]_2D_3$. The number of TRAP (+) MNCs decreased significantly with treatment by PMA at concentrations of 0.01 and $0.1{\mu}M$ in culture. Leptin inhibited PMA-mediated osteoclast generation. Isoquinoline-5-sulfonic 2-methyl-1-piperazide dihydrochloride (H7) had no effect on osteoclast generation induced by $1,25[OH]_2D_3$. Cell culture treatment with leptin resulted in no significant differences in osteoclast generation compared to the corresponding H7 group. Indomethacin showed no significant effect on TRAP (+) MNCs formation from the RAW264.7 cell line. PMA inhibited TRAP (+) MNCs formation induced by RANKL in the RAW264.7 cell culture. H7 had no effect on osteoclast generation from the RAW264.7 cell line. There was no difference compared with the corresponding control group after treatment with leptin. $1,25[OH]_2D_3$- or $PGE_2$-induced osteoclastic activity decreased significantly with leptin treatment at a concentration of 100 ng/ml in mouse bone marrow cell culture. Indomethacin, PMA, and H7 significantly inhibited osteoclastic activity induced by $1,25[OH]_2D_3$ in mouse bone marrow cell culture. No significant differences were found between the leptin treated group and the corresponding control group. The secretion of OPG, a substance known to inhibit osteoclast formation, was detected from the osteoblasts. Treatment by leptin resulted in significant increases in OPG secretion by osteoblastic cells. Taken these results, leptin may be an important regulatory cytokines within the bone marrow microenvironment.

한국 학생들의 시간활동 양상 평가 (Time-activity Pattern Assessment for Korean Students)

  • 류현수;윤효정;엄익춘;박진현;김순신;조만수;양원호
    • 한국환경보건학회지
    • /
    • 제44권2호
    • /
    • pp.143-152
    • /
    • 2018
  • Objectives: The purpose of this study was to provide basic data for air pollutant exposure modelling and understanding the contribution of respective microenvironments by assessing the time-activity patterns of Korean students according to variables such as grade, sex, weekday, and weekend. Methods: In this study, we compared the residential time of 521 (both weekday and weekend) lower elementary students, 1,735 (1,054 on weekdays, 681 on weekends) upper elementary students, 2,210 (1,294 on weekdays, 916 on weekends) middle school students, and 2,366 (1,387 on weekdays, 979 on weekends) high school students in different microenvironments according to grade, sex, weekday, and weekend. We used data from the 2014 Time-Use Survey by the Korean National Statistical Office for upper elementary students through high school students, and surveyed time-activity patterns of 521 lower elementary students aged 7-9 years. Each microenvironment was divided into indoor, outdoor, and transport. Indoor environments were divided into home, school, and other places. In addition, the results of previous studies were compared to this study. Results: Weekday time-activity patterns of Korean students indicated that lower elementary students spent $16.02{\pm}2.53hr$ in the home and $5.37{\pm}2.32hr$ in school. Upper elementary students spent $14.11{\pm}1.79hr$ in the home and $6.27{\pm}1.37hr$ in school. Middle school students spent $12.83{\pm}2.22hr$ in the home and $7.48{\pm}1.88hr$ in school. High school students spent $10.65{\pm}2.86hr$ in the home and $10.23{\pm}2.86hr$ in school on weekdays. High school students spent the least amount of time in the home and the most time in school compared to other grades Conclusions: Students spent most of their time indoors, including in the home, school, and other indoors. On weekdays, as the grade increases, home residential times were decreased and school residential times were increased. Differences in time-activity patterns according to sex were not found for either weekdays or weekends. It is estimated that Korean students could be affected by school indoor air quality. High school students could be most affected by school indoor air quality since they spent the most time at school.