• 제목/요약/키워드: MI effect

검색결과 8,496건 처리시간 0.039초

miR-375 down-regulation of the rearranged L-myc fusion and hypoxia-induced gene domain protein 1A genes and effects on Sertoli cell proliferation

  • Guo, Jia;Liu, Xin;Yang, Yuwei;Liang, Mengdi;Bai, Chunyan;Zhao, Zhihui;Sun, Boxing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1103-1109
    • /
    • 2018
  • Objective: This study aimed to screen and identify the target genes of miR-375 in pig Sertoli (ST) cells and to elucidate the effect of miR-375 on the proliferation of ST cells. Methods: In this study, bioinformatics software was used to predict and verify miR-375 target genes. Quantitative polymerase chain reaction (PCR) was used to detect the relationship between miR-375 and its target genes in ST cells. Enzyme-linked immunosorbent assay (ELISA) of rearranged L-myc fusion (RLF) and hypoxia-induced gene domain protein 1A (HIGD1A) was performed on porcine ST cells, which were transfected with a miR-375 mimics and inhibitor to verify the results. Dual luciferase reporter gene assays were performed to assess the interactions among miR-375, RLF, and HIGD1A. The effect of miR-375 on the proliferation of ST cells was analyzed by CellTiter 96 AQueous One Solution Cell Proliferation Assay (MTS). Results: Five possible target genes of miR-375, including RLF, HIGD1A, colorectal cancer associated 2, POU class 3 homeobox 1, and WW domain binding protein 1 like, were found. The results of quantitative PCR suggested that mRNA expression of RLF and HIGD1A had a negative correlation with miR-375, indicating that RLF and HIGD1A are likely the target genes of miR-375. The ELISA results revealed that RLF and HIGD1A were negatively correlated with the miR-375 protein level. The luminescence results for the miR-375 group cotransfected with wild-type RLF and HIGD1A vector were significantly lower than those of the miR-375 group co-transfected with the blank vector or mutant RLF and HIGD1A vectors. The present findings suggest that RLF and HIGD1A are target genes of miR-375 and that miR-375 inhibits ST cell proliferation according to MTS analysis. Conclusion: It was speculated that miR-375 affects cell proliferation through its target genes, which play an important role in the development of testicular tissue.

식기간 동안의 천리안 기상영상에 대한 미광의 영향 분석 (Stray Light Impacts on the COMS MI Images during the Eclipse Period)

  • 진경욱;박봉규
    • 항공우주기술
    • /
    • 제11권2호
    • /
    • pp.12-18
    • /
    • 2012
  • 이 논문에서는 식기간 동안 미광(stray light)에 의해 천리안 기상 영상이 받게 되는 영향에 대해 분석하였으며 미광의 영향을 제거하기 위한 방법 또한 모색하였다. 기상영상의 경우 식기간 동안 미광의 영향을 받아 영상의 왜곡 (줄무늬 등)문제가 발생한다. 미광의 영향에 대한 정량적 분석이 천리안위성의 궤도상 시험기간 동안에 이루어졌으며, 천리안위성 기상탑재체의 총 4개 적외 채널에 대해 태양과의 거리에 따른 미광의 영향이 분석되었다. 본 연구에서는 계산된 천리안위성의 식기간 자료를 바탕으로 미광의 영향이 매우 강한 사례를 선정하여 적외채널 영상의 미광에 의한 오염 정도를 조사하였다. 또한 영상에 나타난 미광의 영향을 두 개의 열적외 채널을 이용하여 단파적외 채널을 대체하는 방법이 유효함을 확인 하였다.

Combined Detection of Serum MiR-221-3p and MiR-122-5p Expression in Diagnosis and Prognosis of Gastric Cancer

  • Zhang, Yan;Huang, Huifeng;Zhang, Yun;Liao, Nansheng
    • Journal of Gastric Cancer
    • /
    • 제19권3호
    • /
    • pp.315-328
    • /
    • 2019
  • Purpose: To investigate the clinical value of serum miR-221-3p and miR-122-5p expression levels in the diagnosis and prognosis of gastric cancer. Materials and Methods: Serum samples from 141 gastric cancer cases (gastric cancer group), 110 gastric polyps (gastric polyp group), and 75 healthy people (healthy control) were used to detect miR-221-3p and miR-122-5p expression using real-time reverse transcription polymerase chain reaction. Results: Serum miR-221-3p expression was significantly higher in the gastric cancer group than in the gastric polyp group, and it was significantly lower than that before operation. The miR-221-3p expression was significantly higher in the death group than in the survival group. The proliferation and migration ability significantly increased and the apoptosis rate significantly decreased by miR-221-3p transfection in gastric cancer cells. In contrast, the function of miR-122-5p in gastric cancer cells was opposite of miR-221-3p. Serum miR-221-3p expression was negatively correlated with that of miR-122-5p in gastric cancer. Serum miR-221-3p and miR-122-5p expressions were significantly correlated with the degree of differentiation, tumor, node, metastasis stage, lymph node metastasis, and invasion depth. miR-221-3p and miR-122-5p expression levels were independent prognostic factors for postoperative gastric cancer. In the diagnosis and predicting prognosis of gastric cancer, receiver operating characteristic analysis revealed that the area under curve of combined detection of serum miR-221-3p and miR-122-5p expression had a greater diagnostic effect than either single maker. Conclusions: The miR-221-3p and miR-122-5p are involved in the development of gastric cancer, and they have important clinical values in gastric cancer diagnosis and prognosis.

Aberrant Expression of miR-20a and miR-203 in Cervical Cancer

  • Zhao, Shan;Yao, De-Sheng;Chen, Jun-Ying;Ding, Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2289-2293
    • /
    • 2013
  • MicroRNAs (miRNAs) are small, non-coding RNAs that are critical regulators of various diseases. MicroRNA-20a (miR-20a) and microRNA-203 (miR-203) have previously shown significant alteration in a range of cancers. In this study, the expression levels of miR-20a and miR-203 in 100 cervical cancer tissues were detected by qRT-PCR and compared to patient matched-nontumor cervical tissues. Correlations between expression level and clinicopathologic characteristics of cervical cancer were also analyzed. Finally, we studied the effect of miR-20a and miR-203 on cell proliferation in cervical cancer cell lines by MTT. We found that the expression level of miR-20a (P<0.001) was significantly higher in cervical cancer patients than in healthy controls, while that of miR-203 (P<0.001) was lower. Aberrant expression of miR-20a was correlated with lymph node metastasis (LNM), histological grade and tumor diameter, but down-regulated miR-203 was correlated with LNM only. Furthermore, we found that over-expression of miR-203 decreased cell proliferation, while reduction of miR-20a also prevented tumor progression. Our results support the involvement of miR-20a and miR-203 in cervical tumorigenesis. We propose that miRNAs might be used as therapeutic agents for cervical cancer.

LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against miR-331-3p and miR-338-3p

  • Luan, Xiaotian;Wang, Yankui
    • Journal of Gynecologic Oncology
    • /
    • 제29권6호
    • /
    • pp.95.1-95.17
    • /
    • 2018
  • Objective: Cervical cancer is one of the most common malignant tumors. Our previous results showed that long non-coding RNA (lncRNA) XLOC_006390 plays an important role in cervical cancer. In this study, we have explored the mechanism of action of lncRNA XLOC_006390. Methods: LncRNA XLOC_006390 was proposed to exercise its function as a competing endogenous RNA (ceRNA), and its potential targeted miRNAs was predicted through the database LncBase Predicted v.2. Two miRNAs, miR-331-3p, and miR-338-3p, were chosen for the study. Expression of miRNAs and lncRNA in cervical cancer cells and tissues was detected by reverse transcription polymerase chain reaction. To determine the correlation, silencing of XLOC_006390, over-expression of miR-331-3p, and miR-338-3p was performed in SiHa and Caski cell lines, respectively. Results: Based on the interactive effect between miRNA and lncRNA, miR-331-3p and miR-338-3p were significantly downregulated in cervical cancer cells and tissues, and their expression levels were negatively related to that of lncRNA. Our results also showed that the expression of miR-331-3p target gene NRP2, miR-338-3p target genes PKM2, EYA2 was significantly downregulated when the XLOC_006390 was knocked down. Further, XLOC_006390 was found to facilitate cervical cancer tumorigenesis and metastasis by downregulating miR-331-3p and miR-338-3p expression. Conclusion: Taken together, our study demonstrated that XLOC_006390 may serve as a ceRNA and reversely regulates the expression of miR-331-3p and miR-338-3p, thus facilitating cervical cancer tumorigenesis and metastasis.

MicroRNA-127 promotes antimicrobial ability in porcine alveolar macrophages via S1PR3/TLR signaling pathway

  • Honglei Zhou;Yujia Qian;Jing Liu
    • Journal of Veterinary Science
    • /
    • 제24권2호
    • /
    • pp.20.1-20.13
    • /
    • 2023
  • Background: As Actinobacillus pleuropneumonniae (APP) infection causes considerable losses in the pig industry, there is a growing need to develop effective therapeutic interventions that leverage host immune defense mechanisms to combat these pathogens. Objectives: To demonstrate the role of microRNA (miR)-127 in controlling bacterial infection against APP. Moreover, to investigate a signaling pathway in macrophages that controls the production of anti-microbial peptides. Methods: Firstly, we evaluated the effect of miR-127 on APP-infected pigs by cell count/enzyme-linked immunosorbent assay (ELISA). Then the impact of miR-127 on immune cells was detected. The cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were evaluated by ELISA. The expression of cytokines (anti-microbial peptides [AMPs]) was assessed using quantitative polymerase chain reaction. The expression level of IL-6, TNF-α and p-P65 were analyzed by western blot. The expression of p65 in the immune cells was investigated by immunofluorescence. Results: miR-127 showed a protective effect on APP-infected macrophage. Moreover, the protective effect might depend on its regulation of macrophage bactericidal activity and the generation of IL-22, IL-17 and AMPs by targeting sphingosine-1-phosphate receptor3 (SIPR3), the element involved in the Toll-like receptor (TLR) cascades. Conclusions: Together, we identify that miR-127 is a regulator of S1PR3 and then regulates TLR/nuclear factor-κB signaling in macrophages with anti-bacterial acticity, and it might be a potential target for treating inflammatory diseases caused by APP.

Global and Local Competition between Exogenously Introduced microRNAs and Endogenously Expressed microRNAs

  • Kim, Doyeon;Kim, Jongkyu;Baek, Daehyun
    • Molecules and Cells
    • /
    • 제37권5호
    • /
    • pp.412-417
    • /
    • 2014
  • It has been reported that exogenously introduced micro-RNA (exo-miRNA) competes with endogenously expressed miRNAs (endo-miRNAs) in human cells, resulting in a detectable upregulation of mRNAs with endo-miRNA target sites (TSs). However, the detailed mechanisms of the competition between exo- and endo-miRNAs remain uninvestigated. In this study, using 74 microarrays that monitored the whole-transcriptome response after introducing miRNAs or siRNAs into HeLa cells, we systematically examined the derepression of mRNAs with exo- and/or endo-miRNA TSs. We quantitatively assessed the effect of the number of endo-miRNA TSs on the degree of mRNA derepression. As a result, we observed that the number of endo-miRNA TSs was significantly associated with the degree of derepression, supporting that the derepression resulted from the competition between exo- and endo-miRNAs. However, when we examined whether the site proficiency of exo-miRNA TSs could also influence mRNA derepression, to our surprise, we discovered a strong positive correlation. Our analysis indicates that site proficiencies of both exo- and endo-miRNA TSs are important determinants for the degree of mRNA derepression, implying that the derepression of mRNAs in response to exo-miRNA is more complex than that currently perceived. Our observations may lead to a more complete understanding of the detailed mechanisms of the competition between exo- and endo-miRNAs and to a more accurate prediction of miRNA targets. Our analysis also suggests an interesting hypothesis that long 3'-UTRs may function as molecular buffer against gene expression regulation by individual miRNAs.

Regulation of IL-6 signaling by miR-125a and let-7e in endothelial cells controls vasculogenic mimicry formation of breast cancer cells

  • Park, Youngsook;Kim, Jongmin
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.214-219
    • /
    • 2019
  • The role of tumor-proximal factors in tumor plasticity during chemoresistance and metastasis following chemotherapy is well studied. However, the role of endothelial cell (EC) derived paracrine factors in tumor plasticity, their effect on chemotherapeutic outcome, and the mechanism by which these paracrine factors modulate the tumor microenvironment are not well understood. In this study, we report a novel mechanism by which endothelial miR-125a and let-7e-mediated regulation of interleukin-6 (IL-6) signaling can manipulate vasculogenic mimicry (VM) formation of MDA-MB-231 breast cancer cells. We found that endothelial IL-6 levels were significantly higher in response to cisplatin treatment, whereas levels of IL-6 upon cisplatin exposure remained unchanged in MDA-MB-231 breast cancer cells. We additionally found an inverse correlation between IL-6 and miR-125a/let-7e expression levels in cisplatin treated ECs. Interestingly, IL-6, IL-6 receptor (IL-6R), and signal transducer and activator of transcription 3 (STAT3) genes in the IL-6 pathway are closely regulated by miR-125a and let-7e, which directly target its 3' untranslated region. Functional analyses revealed that endothelial miR-125a and let-7e inhibit IL-6-induced adhesion of monocytes to ECs. Furthermore, conditioned medium from cisplatin treated ECs induced a significantly higher formation of VM in MDA-MB-231 breast cancer cells as compared to that from intact ECs; this effect of cisplatin treatment was abrogated by concurrent overexpression of miR-125a and let-7e. Overall, this study reveals a novel EC-tumor cell crosstalk mediated by the endothelial miR-125a/let-7e-IL-6 signaling axis, which might improve chemosensitivity and provide potential therapeutic targets for the treatment of cancer.

Antidepressant-like effect of ginsenoside Rb1 on potentiating synaptic plasticity via the miR-134-mediated BDNF signaling pathway in a mouse model of chronic stress-induced depression

  • Wang, Guoli;An, Tianyue;Lei, Cong;Zhu, Xiaofeng;Yang, Li;Zhang, Lianxue;Zhang, Ronghua
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.376-386
    • /
    • 2022
  • Background: Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) plays a critical role in the pathogenesis of depression by modulating synaptic structural remodeling and functional transmission. Previously, we have demonstrated that the ginsenoside Rb1 (Rb1) presents a novel antidepressant-like effect via BDNF-TrkB signaling in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed mice. However, the underlying mechanism through which Rb1 counteracts stress-induced aberrant hippocampal synaptic plasticity via BDNF-TrkB signaling remains elusive. Methods: We focused on hippocampal microRNAs (miRNAs) that could directly bind to BDNF and are regulated by Rb1 to explore the possible synaptic plasticity-dependent mechanism of Rb1, which affords protection against CUMS-induced depression-like effects. Results: Herein, we observed that brain-specific miRNA-134 (miR-134) could directly bind to BDNF 30 UTR and was markedly downregulated by Rb1 in the hippocampus of CUMS-exposed mice. Furthermore, the hippocampus-targeted miR-134 overexpression substantially blocked the antidepressant-like effects of Rb1 during behavioral tests, attenuating the effects on neuronal nuclei-immunoreactive neurons, the density of dendritic spines, synaptic ultrastructure, long-term potentiation, and expression of synapse-associated proteins and BDNF-TrkB signaling proteins in the hippocampus of CUMS-exposed mice. Conclusion: These data provide strong evidence that Rb1 rescued CUMS-induced depression-like effects by modulating hippocampal synaptic plasticity via the miR-134-mediated BDNF signaling pathway.

Dexamethasone에 의한 RANKL 유도성 파골세포 분화 촉진 효과 (The Stimulatory Effect of Dexamethasone on RANKL-induced Osteoclastogenesis)

  • 노아롱새미;천링;박효정;양미혜;이정민;임미정
    • 약학회지
    • /
    • 제53권2호
    • /
    • pp.78-82
    • /
    • 2009
  • We explored the effects of dexamethasone on osteoclast precursors using BMMs. Dexamethasone inhibited the proliferation of BMMs. Furthermore, it stimulated the osteoclast formation via NFATc1 activation in the presence of RANKL. Since dexamethasone targeted the early stage of osteoclast formation, we investigated its effect on mRNA expression of GR and $IFN-{\beta}$. Whereas dexamethasone had no effects on GR expression in the presence of RANKL, it reduced the expression of $IFN-{\beta}$, suggesting that dexamethasone increased RANKL-induced osteoclast formation by modulating $IFN-{\beta}$.